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1 Introduction

This document describes BIKE, a suite of algorithms for key encapsulation based on
quasi-cyclic moderate density parity-check (QC-MDPC) codes that can be decoded
using bit �ipping decoding techniques. In particular, this document highlights the
number of security, performance and simplicity advantages that make BIKE a
compelling candidate for post-quantum key encapsulation standardization.

1.1 Notation and Preliminaries

Table 1 presents the used notation and is followed by preliminary concepts.

Notation Description

F2: Finite �eld of 2 elements.

R: The cyclic polynomial ring F2[X]/〈Xr − 1〉.

|v|: The Hamming weight of a binary polynomial v.

u
$←U : Variable u is sampled uniformly at random from set U .

hj : The j-th column of a matrix H, as a row vector.

?: The component-wise product of vectors.

Table 1: Notation

De�nition 1 (Linear codes). A binary (n, k)-linear code C of length n dimension
k and co-dimension r = (n− k) is a k-dimensional vector subspace of Fn2 .

De�nition 2 (Generator and Parity-Check Matrices). A matrix G ∈ Fk×n2 is called
a generator matrix of a binary (n, k)-linear code C i�

C = {mG | m ∈ Fk2}.

A matrix H ∈ F(n−k)×n
2 is called a parity-check matrix of C i�

C = {c ∈ Fn2 | HcT = 0}.

A codeword c ∈ C of a vector m ∈ F(n−r)
2 is computed as c = mG. A syndrome

s ∈ Fr2 of a vector e ∈ Fn2 is computed as sT = HeT .
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1.2 Quasi-Cyclic Codes

A binary circulant matrix is a square matrix where each row is the rotation one
element to the right of the preceding row. It is completely de�ned by its �rst row.
A block-circulant matrix is formed of circulant square blocks of identical size. The
size of the circulant blocks is called the order. The index of a block-circulant matrix
is the number of circulant blocks in a row.

1.2.1 De�nition

De�nition 3 (Quasi-Cyclic Codes). A binary quasi-cyclic (QC) code of index n0
and order r is a linear code which admits as generator matrix a block-circulant
matrix of order r and index n0. A (n0, k0)-QC code is a quasi-cyclic code of index
n0, length n0r and dimension k0r.

For instance:

G = � �
The rows of G span a (2, 1)-QC code

G = � � �
The rows of G span a (3, 1)-QC code

1.2.2 Representation of QC Codes

Representation of Circulant Matrices. There exists a natural ring iso-
morphism, which we denote ϕ, between the binary r×r circulant matrices and the
quotient polynomial ring R = F2[X]/(Xr − 1). The circulant matrix A whose �rst
row is (a0, . . . , ar−1) is mapped to the polynomial ϕ(A) = a0+a1X+· · ·+ar−1Xr−1.
This will allow us to view all matrix operations as polynomial operations.

Transposition. For any a = a0 +a1X+a2X
2 + · · ·+ar−1X

r−1 in R, we de�ne
aT = a0 + ar−1X + · · ·+ a1X

r−1. This will ensure ϕ(AT ) = ϕ(A)T .

Vector/Matrix Product. We may extend the mapping ϕ to any binary vec-
tor of Fr2 . For all v = (v0, v1, . . . , vr−1), we set ϕ(v) = v0 + v1X + · · ·+ vr−1X

r−1.
To stay consistent with the transposition, the image of the column vector vT

must be ϕ(vT ) = ϕ(v)T = v0 + vr−1X + · · · + v1X
r−1. It is easily checked that

ϕ(vA) = ϕ(v)ϕ(A) and ϕ(AvT ) = ϕ(A)ϕ(v)T .
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Representation of QC Codes as Codes over a Polynomial Ring. The
generator matrix of an (n0, k0)-QC code can be represented as an k0 × n0 matrix
over R. Similarly any parity check matrix can be viewed as an (n0 − k0) × n0
matrix over R. Respectively

G =

 g0,0 · · · g0,n0−1
...

...
gk0−1,0 · · · gk0−1,n0−1

 , H =

 h0,0 · · · h0,n0−1
...

...
hn0−k0−1,0 · · · hn0−k0−1,n0−1


with all gi,j and hi,j in R. In all respects, a binary (n0, k0)-QC code can be viewed
as an [n0, k0] code over the ring R = F2[X]/(Xr − 1).

1.3 QC-MDPC Codes

A binary MDPC (Moderate Density Parity Check) code is a binary linear code
which admits a somewhat sparse parity check matrix, with a typical density of
order O(1/

√
n). The existence of such a matrix allows the use of iterative decoders

similar to those used for LDPC (Low Density Parity Check) codes [17], widely
deployed for error correction in telecommunication.

1.3.1 De�nition

De�nition 4 (QC-MDPC codes). An (n0, k0, r, w)-QC-MDPC code is an (n0, k0)
quasi-cyclic code of length n = n0r, dimension k = k0r, order r (and thus index
n0) admitting a parity-check matrix with constant row weight w = O(

√
n).

Remark 1. Asymptotically, a QC-MDPC code could e�ciently correct up to t =
O(
√
n log n) errors. This is a corollary of Theorem 1 given in paragraph �Asymp-

totic Analysis for MDPC Codes� that follows. In this work, the parity-check row
weight w and the error weight t will be chosen so that wt = O(n). This is precisely
the regime where the decryption failure rate is expected to decay exponentially in
the codelength n (see Theorem 1).

1.3.2 Decoding - The Bit Flipping Algorithm

The decoding of MDPC codes can be achieved by various iterative decoders.
Among those, the bit �ipping algorithm is particularly interesting because of its
simplicity. In Algorithm 1 as it is given here the instruction to determine the
threshold τ is unspeci�ed. We will always consider regular codes, where all columns
of h have the same weight d and we denote T = τd. There are several rules for
computing the threshold T :

3



Algorithm 1 Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2

Ensure: eHT = s
1: e← 0
2: s′ ← s
3: while s′ 6= 0 do
4: τ ← threshold ∈ [0, 1], found according to some prede�ned rule
5: for j = 0, . . . , n− 1 do
6: if |hj ? s′| ≥ τ |hj | then
7: ej ← ej + 1 mod 2

8: s′ ← s− eHT

9: return e

hj denotes the j-th column of H, as a row vector, ′?′ denotes the component-
wise product of vectors, and |hj ? s| is the number of unchecked parity equations
involving j.

� the maximal value of |hj ? s| minus some δ (typically δ = 5), as in [33],

� precomputed values depending on the iteration depth, as in [12],

� variable, depending on the weight of the syndrome s′, as in [11].

The algorithm takes as input a parity check matrix H and a word s and, if it
stops, returns an error pattern e whose syndrome is s. If H is sparse enough and
there exists an error e of small enough weight such that s = eHT , then, with high
probability, the algorithm stops and returns e.

Asymptotic Analysis for MDPC Codes. For a �xed code rate k/n, let
us denote w the weight of the rows of H and t the number of errors we are able to
decode. Both w and t are functions of n. For LDPC codes, w is a constant and t
will be a constant proportion of n, that is wt = Ω(n). For MDPC codes, we have
w = Ω(

√
n) and the amount of correctable errors will turn out to be a little bit

higher than t = Ω(
√
n).

To understand this point, let us �rst notice that experimental evidence seems
to indicate that the decryption failure rate is dominated by the probability that
the �rst round of the algorithm is unable to reduce signi�cantly the number of
initial errors. What we call here �round� of the decoding algorithm is an execution
of the for-loop of line 5 of Algorithm 1. It also seems that at the �rst round of the
decoding algorithm the individual bits of the syndrome bits si can be approximated
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by independent random variables. This independence assumption can also be made
for the vectors hj ? s = hj ? s

′ at the �rst round. In other words, we make the
following assumptions.

Assumption 1. Let Perr be the probability that the bit �ipping algorithm fails to
decode. Let e1 be the value of error-vector e after executing the for-loop of line 5
of Algorithm 1 and let e0 be the true error vector. Let ∆e = e0 + e1 (addition is
performed in F2) be the error vector that would remain if we applied the correction
e1 to the true error vector e0.

� There exists a constant α in (0, 1) such that

Perr ≤ P(|∆e| ≥ αt).

� The syndrome bits si are independent random variables.

� For j = 0, . . . , n− 1, the hj ? s are independent random variables.

By making these assumptions we can prove that

Theorem 1. Under assumption 1, the probability Perr that the bit �ipping algo-
rithm fails to decode with �xed threshold τ = 1

2 is upper-bounded by

Perr ≤
1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t),

where ε
def
= e−

2wt
n .

This theorem is proved in Appendix A. This theorem shows that the decryption
failure rate (DFR) decays exponentially in the codelength when wt = O (n) and
that the number of correctable errors is a little bit larger than O (

√
n) when w =

O (
√
n): it can be as large as some constant β

√
n lnn as the upper-bound in this

theorem is easily shown to converge to 0 for a small enough constant β.

Decoding with a Noisy Syndrome. Noisy syndrome decoding is a variation
of syndrome decoding in which, given H and s, we look for e ∈ Fn2 such that
s−eHT and e are both of small weight. The bit �ipping algorithm can be adapted
to noisy syndromes. Three things must be modi�ed. First the stopping condition:
we do not require the quantity s − eHT to be null, only to have a small weight.
Second, since we need to quantify the weight in this stopping condition, we need
to specify a target weight u. For input (H, s, u) a pair (e, e′) is returned such
that s = e′ + eHT for some e′ of weight at most u. If u = 0 we have the usual

5



Algorithm 2 Extended Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: e← 0
2: s′ ← s
3: while |s′| > u do
4: τ ← threshold ∈ [0, 1], found according to some prede�ned rule
5: for j = 0, . . . , n− 1 do
6: if |hj ? s′| ≥ τ |hj | then
7: ej ← ej + 1 mod 2

8: s′ ← s− eHT

9: return (e, transpose(s′))

bit �ipping algorithm. Again, if H is sparse enough and there exists a solution,
the algorithm will stop with high probability. Note that if the algorithm stops,
it returns a solution within the prescribed weight, but this solution might not be
unique. In the case of MDPC codes, the column weight and the error weight
are both of order

√
r and the solution is unique with high probability. Finally,

for noisy-syndrome decoding (required by BIKE-3 variants), we need to recover
the additional error vector. This is accomplished by computing transpose(s′). In
practice, the transpose function inverts the order of the resulting syndrome s′,
except for the �rst element that remains unchanged.

Noisy Syndrome vs. Normal Bit Flipping. Interestingly, for MDPC
codes, noisy syndromes a�ect only marginally the performance of the bit �ipping
algorithm. In fact, if e is the solution of s = e′+eHT , then it is also the solution of
s = (e, 1)H ′T where H ′ is obtained by appending e′ as n+1-th column. For MDPC
codes, the error vector e′ has a density which is similar to that of H and thus H ′

is sparse and its last column is not remarkably more or less sparse. Thus applying
the bit �ipping algorithm to (H ′, s) is going to produce e, except that we do not
allow the last position to be tested in the loop and control is modi�ed to stop the
loop when the syndrome s′ is equal to the last column of H ′. Since we never test
the last position we don't need to know the value of the last column of H ′ except
for the stopping condition which can be replaced by a test on the weight. Thus
we emulate (almost) the noisy syndrome bit �ipping by running the bit �ipping
algorithm on a code of length n + 1 instead of n, to correct |e| + 1 errors instead
of |e|.

6



QC-MDPC Decoding for Decryption. Quasi-cyclicity does not change
the decoding algorithm. The above algorithm will be used for (2, 1)-QC MDPC
codes. It allows us to de�ne the procedure speci�ed as follows. For any triple
(s, h0, h1) ∈ R3 and any integer u

Decode(s, h0, h1, u) returns (e0, e1) ∈ R2 with |e0h0 + e1h1 + s| ≤ u.

The fourth argument u is an integer. If u = 0, the algorithm stops when e0h0 +
e1h1 = s, that is the noiseless syndrome decoding, otherwise it stops when e0h0 +
e1h1 = s+e from some e of weight at most u, that is the noisy syndrome decoding.
In addition, we will bound the running time (as a function of the block size r) and
stop with a failure when this bound is exceeded.

1.4 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) is composed by three algorithms: Gen
which outputs a public encapsulation key pk and a private decapsulation key sk,
Encaps which takes as input an encapsulation key pk and outputs a ciphertext
c and a symmetric key K, and Decaps which takes as input a decapsulation key
sk and a cryptogram c and outputs a symmetric key K or a decapsulation failure
symbol ⊥ (unless using implicit rejection). For more details on KEM de�nitions,
we refer the reader to [14].

2 Algorithm Speci�cation (2.B.1)

2.1 IND-CPA Variants

In this section, we decribe the BIKE variants that achieve IND-CPA security. These
variants use ephemeral keys, meaning that a new key pair is generated at each key
exchange. In this way, forward security is achieved. Additionally, attack strategies
that depend on the observation of a large number of decoding failures for a same
private key, such as [19], are not applicable.

In the following we will present three IND-CPA secure variants of BIKE, which
we will simply label BIKE-1, BIKE-2 and BIKE-3. All of the variants follow either
the McEliece or the Niederreiter framework, but each one has some important
di�erences, which we will discuss individually.

For a security level λ, let r be a prime such that (Xr − 1)/(X − 1) ∈ F2[X] is
irreducible, dv be an odd integer and t be an integer such that decoding t errors
with a uniformly chosen binary linear error-correcting code of length n = 2r and
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dimension r, as well as recovering a base of column weight dv given an arbitrary
base of a code of the same length and dimension, both have a computational cost
in Ω(exp(λ)). See Section 5 for a detailed discussion on parameters selection.

We denote by K : {0, 1}n → {0, 1}`K the hash function used by encapsulation
and decapsulation, where `K is the desired symmetric key length (typically 256
bits).

2.1.1 BIKE-1

In this variant, we privilege a fast key generation by using a variation of McEliece.
A preliminary version of this approach appears in [4].

First, in contrast to QC-MDPC McEliece [33] (and any QC McEliece variant),
we do not compute the inversion of one of the private cyclic blocks and then
multiply it by the whole private matrix to get systematic form. Instead, we hide
the private code structure by simply multiplying its sparse private matrix by any
random, dense cyclic block. The price to pay is the doubled size for the public key
and the data since the public key will not feature an identity block anymore.

Secondly, we interpret McEliece encryption as having the message conveyed in
the error vector, rather than the codeword. This technique is not new, following
the lines of Micciancio's work in [32] and having already been used in a code-based
scheme by Cayrel et al. in [9].

KeyGen

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate g
$←R of odd weight (so |g| ≈ r/2).

3. Compute (f0, f1)← (gh1, gh0).

Encaps

- Input: the dense public key (f0, f1).

- Output: the encapsulated key K and the cryptogram c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.

2. Generate m
$←R.

3. Compute c = (c0, c1)← (mf0 + e0,mf1 + e1).

4. Compute K ← K(e0, e1).

8



Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.

- Output: the decapsulated key K or a failure symbol ⊥.

1. Parse c as (c0, c1) and compute the syndrome s← c0h0 + c1h1.

2. Try to decode s (noiseless) to recover an error vector (e′0, e
′
1).

3. If |(e′0, e′1)| 6= t or decoding failed, output ⊥ and halt.

4. Else, compute K ← K(e′0, e
′
1).

2.1.2 BIKE-2

In this variant, we follow Niederreiter's framework with a systematic parity check
matrix. The main advantage is that this only requires a single block of length r for
all the objects involved in the scheme, and thus yields a very compact formulation.
On the other hand, this means that it is necessary to perform a polynomial inver-
sion. In this regard, it is worth mentioning that an inversion-based key generation
can be signi�cantly slower than encryption (e.g., up to 21x as reported in [30]). A
possible solution is to use a batch key generation as described in Section 3.9.

KeyGen

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key h.

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Compute h← h1h
−1
0 .

Encaps

- Input: the dense public key h.

- Output: the encapsulated key K and the cryptogram c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.

2. Compute c← e0 + e1h.

3. Compute K ← K(e0, e1).
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Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.

- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← ch0.

2. Try to decode s (noiseless) to recover an error vector (e′0, e
′
1).

3. If |(e′0, e′1)| 6= t or decoding failed, output ⊥ and halt.

4. Else, compute K ← K(e′0, e
′
1).

2.1.3 BIKE-3

This variant follows the work of Ouroboros [15]. Looking at the algorithms descrip-
tion, the variant resembles BIKE-1, featuring fast, inversion-less key generation and
two blocks for public key and data. As for BIKE-1, we interpret Ouroboros as hav-
ing the message conveyed in the error vector (e0, e1). The main di�erence is that
the decapsulation invokes the decoding algorithm on a �noisy� syndrome. This also
means that BIKE-3 is fundamentally distinct from BIKE-1 and BIKE-2, mainly
in terms of security and security-related aspects like choice of parameters. We will
discuss this in the appropriate section.

BIKE-3 also o�ers a bandwidth-latency trade-o� by using a seed representation
for the second half of the public key. For a reasonable computation overhead, the
resulting bandwidth is slightly larger than that of BIKE-2, and almost halved
compared to BIKE-1. More details about this trade-o� are provided in Sec. 3.4.

KeyGen

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate g
$←R of odd weight (so |g| ≈ r/2).

3. Compute (f0, f1)← (h1 + gh0, g).

Encaps

- Input: the dense public key (f0, f1).

- Output: the encapsulated key K and the cryptogram c.

1. Sample (e, e0, e1) ∈ R3 with |e| = t/2 and |e0|+ |e1| = t.

2. Compute c = (c0, c1)← (e+ e1f0, e0 + e1f1).

3. Compute K ← K(e0, e1, e).
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KeyGen (bandwidth optimized)

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate seedg uniformly at random.

3. Derive g of odd weight from seedg: g
seedg←−−− R (so |g| ≈ r/2).

4. Compute (f0, seedf1)← (h1 + gh0, seedg).

Encaps (bandwidth optimized)

- Input: the dense public key (f0, seedf1).

- Output: the encapsulated key K and the cryptogram c.

1. Derive f1 from seedf1 : f1
seedf1←−−−− R

2. Sample (e, e0, e1) ∈ R3 with |e| = t/2 and |e0|+ |e1| = t.

3. Compute c = (c0, c1)← (e+ e1f0, e0 + e1f1).

4. Compute K ← K(e0, e1, e).

Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.

- Output: the decapsulated key K or a failure symbol ⊥.

1. Parse c as (c0, c1) and compute the syndrome s← c0 + c1h0.

2. Try to decode s (with noise at most t/2) to recover error vector (e′0, e
′
1, e
′).

3. If |(e′0, e′1)| 6= t, |e′| 6= t/2 or decoding failed, output ⊥ and halt.

4. Else, compute K ← K(e′0, e
′
1, e
′).

Comparison between IND-CPA BIKE variants. For ease of compar-
ison, we provide a summary of the three schemes in Table 2 below.

We remark that e can be represented with only dlog2
(
n
t

)
e bits and such a com-

pact representation can be used if memory is the preferred metric of optimization
(the hash function K would need to be changed as well to receive dlog2

(
n
t

)
e bits

instead of n).
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BIKE-1 BIKE-2 BIKE-3

SK (h0, h1) with |h0| = |h1| = w/2

PK (f0, f1)← (gh1, gh0) (f0, f1)← (1, h1h
−1
0 ) (f0, f1)← (h1 + gh0, g)

Enc (c0, c1)← (mf0 + e0,mf1 + e1) c← e0 + e1f1 (c0, c1)← (e+ e1f0, e0 + e1f1)

K ← K(e0, e1) K ← K(e0, e1, e)

Dec s← c0h0 + c1h1 ; u← 0 s← ch0 ; u← 0 s← c0 + c1h0 ; u← t/2

(e′0, e
′
1)← Decode(s, h0, h1, u) (e′0, e

′
1, e
′)← Decode(s, h0, h1, u)

K ← K(e′0, e
′
1) K ← K(e′0, e

′
1, e
′)

Table 2: Algorithm Comparison

2.2 IND-CCA Variants

This version of BIKE is designed to make use of static keys, meaning that several
key exchanges can take place with the same key pair. This is possible thanks to the
improved Back�ip decoder, which yields an extremely small number of decoding
failures, corresponding of the desired security level. Moreover, a small decoding
failure rate inhibits the GJS attack [19], which needs to collect several failures.

In the following we will present three IND-CCA secure variants of BIKE, called
BIKE-1-CCA, BIKE-2-CCA and BIKE-3-CCA, corresponding to their respective
IND-CPA counterparts. All of the variants are obtained by applying a speci�c
conversion to the underlying cryptosystem, and we will discuss the details of these
conversions individually in Section 6.2.

In order to prevent reaction attacks (such as GJS), it is necessary to enforce
a uniform distribution of the error vector, since such attacks depend strongly on
being able to choose speci�c error patterns which are more likely to cause a de-
coding failure. This can be accomplished quite easily in BIKE-1-CCA, just by
�switching back� the roles of plaintext and randomness in the underlying PKE. For
BIKE-2-CCA and BIKE-3-CCA, instead, we introduce the following additional
twist. Let (c,K(e0, e1)) be the output of encapsulation in the corresponding BIKE
version. We build an IND-CCA secure KEM using, as underlying PKE, the hybrid
encryption scheme obtained by combining the respective version of BIKE, with a
simple DEM (a one-time pad), as detailed next. To encrypt a plaintext M , we
�rst generate the random KEM input1, say η, and then we form the ciphertext
as C = (c,K(e0, e1)⊕M). Decryption proceeds by decoding c as usual, and then
recovering the plaintext by undoing the one-time pad.

1This is η = (e0, e1) for BIKE-2 and η = (e, e0, e1) for BIKE-3, as per previous section.
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It is easy to see that this simple PKE achieves IND-CPA security, and this
means that, as an added bonus, the security reduction based on it will be tighter.
More importantly, when we embed this PKE in the IND-CCA conversion, the
plaintext M is really just a seed, say z ∈ {0, 1}`K , and the PKE needs to be
derandomized. This means that we can choose a compact seed z and generate the
randomness via a dedicated hash function H, i.e. η = H(z). The resulting error
vectors are now generated as hash values, and therefore cannot be controlled by an
attacker.

2.2.1 BIKE-1-CCA

Like its IND-CPA counterpart, this scheme features a very fast key generation
since it avoids polynomial inversion. Unlike BIKE-1, however, the scheme follows
the �original� McEliece approach with the plaintext conveyed in the message m,
and the randomness in the error vector. The latter is not sampled independently
as usual, but it is instead extracted from m via the hash function H. Besides
guaranteeing a uniform distribution of the error vector (for the reasons explained
above), this also serves to derandomize the scheme to allow plaintext checking
(during decapsulation), which is essential to realize the Fujisaki-Okamoto transform
and obtain IND-CCA security. Note that plaintext checking is done by verifying
the equality of the error vectors (decoding output vs hash output) and thatH takes
as input the codeword (mf0,mf1) rather than m itself, in order to avoid having to
recover m, which would imply a polynomial inversion.

KeyGen

- Input: λ, the target quantum security level.

- Output: the private key (h0, h1, σ0, σ1) and the public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate σ0, σ1
$←R uniformly at random.

3. Generate g
$←R of odd weight (so |g| ≈ r/2).

4. Compute (f0, f1)← (gh1, gh0).

Encaps

- Input: the public key (f0, f1).

- Output: the encapsulated key K and the cryptogram c.

1. Generate m
$←R uniformly at random.
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2. Compute (e0, e1)← H(mf0,mf1).

3. Compute c = (c0, c1)← (mf0 + e0,mf1 + e1).

4. Compute K ← K(mf0,mf1, c).

Decaps

- Input: the private key (h0, h1, σ0, σ1) and the cryptogram c.

- Output: the decapsulated key K.

1. Parse c as (c0, c1) and compute the syndrome s← c0h0 + c1h1.

2. Try to decode s (noiseless) to recover an error vector (e′0, e
′
1).

3. Compute (e′′0, e
′′
1)← H(c0 + e′0, c1 + e′1).

4. If |(e′0, e′1)| 6= t, decoding failed or (e′0, e
′
1) 6= (e′′0, e

′′
1), computeK ← K(σ0, σ1, c).

5. Else, compute K ← K(c0 + e′0, c1 + e′1, c).

Comparison between the CPA and CCA versions of BIKE-1.
For ease of comparison, we provide a summary in Table 3.

BIKE-1 BIKE-1-CCA

SK (h0, h1) (h0, h1, σ0, σ1)

with |h0| = |h1| = w/2

PK (f0, f1)← (gh1, gh0)

Enc m
$←R

(e0, e1)
$←R2 (e0, e1)← H(mf0,mf1)

such that |e0|+ |e1| = t

(c0, c1)← (mf0 + e0,mf1 + e1)

K ← K(e0, e1, c) K ← K(mf0,mf1, c)

Dec s← c0h0 + c1h1 ; u← 0

(e′0, e
′
1)← Decode(s, h0, h1, u)

(e′′0 , e
′′
1 )← H(c0 + e′0, c1 + e′1)

K ← K(e′0, e
′
1, c
′) K ← K(σ0, σ1, c) K ← K(c0 + e′0, c1 + e′1, c)

Table 3: Algorithm Comparison: BIKE-1
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2.2.2 BIKE-2-CCA

As before, this variant is based on the Niederreiter cryptosystem. As we will see
in Section 6.2, this not only yields a very compact formulation, but also a tighter
security reduction, due to the nature of the underlying cryptosystem. Note that, in
this variant, plaintext checking is done once again on the error vectors, rather than
on the plaintext itself (the seed z), and since z is recovered from the one-time pad,
it is possible to avoid the usage of a (costly) constant-weight encoding function.

KeyGen

- Input: λ, the target quantum security level.

- Output: the private key (h0, h1, σ0, σ1) and the public key h.

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate σ0, σ1
$←R uniformly at random.

3. Compute h← h1h
−1
0 .

Encaps

- Input: the public key h.

- Output: the encapsulated key K and the cryptogram C = (c, d).

1. Generate z
$←{0, 1}`K uniformly at random.

2. Compute (e0, e1)← H(z).

3. Compute C = (c, d)← (e0 + e1h,K(e0, e1)⊕ z).
4. Compute K ← K(e0, e1, c, d).

Decaps

- Input: the private key (h0, h1, σ0, σ1) and the cryptogram C = (c, d).

- Output: the decapsulated key K.

1. Compute the syndrome s← ch0.

2. Try to decode s (noiseless) to recover error vector (e′0, e
′
1).

3. Compute z ← d⊕K(e′0, e
′
1).

4. If |(e′0, e′1)| 6= t, decoding failed or (e′0, e
′
1) 6= H(z), computeK ← K(σ0, σ1, c, d).

5. Else, compute K ← K(e′0, e
′
1, c, d).
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BIKE-2 BIKE-2-CCA

SK (h0, h1) (h0, h1, σ0, σ1)

with |h0| = |h1| = w/2

PK (f0, f1)← (1, h1h
−1
0 )

Enc z
$←{0, 1}`K

(e0, e1)
$←R2 (e0, e1)← H(z)

such that |e0|+ |e1| = t

c← e0 + e1f1 (c, d)← (e0 + e1h,K(e0, e1)⊕ z)
K ← K(e0, e1) K ← K(e0, e1, c, d)

Dec s← c0h0 + c1h1 ; u← 0

(e′0, e
′
1)← Decode(s, h0, h1, u)

z ← d⊕K(e′0, e
′
1)

K ← K(e′0, e
′
1) K ← K(σ0, σ1, c, d) K ← K(e′0, e

′
1, c, d)

Table 4: Algorithm Comparison: BIKE-2

Comparison between the CPA and CCA versions of BIKE-2.
For ease of comparison, we provide a summary in Table 4.

2.2.3 BIKE-3-CCA

Finally, this variant follows in the footsteps of BIKE-3. The �ow is similar to
BIKE-2-CCA, and is able to avoid a constant-weight encoding function. However,
as in BIKE-1-CCA, this variant features fast, inversion-less key generation and
two blocks for public key and data. Note that, obviously, the same bandwidth
optimization previously illustrated for BIKE-3 can be applied to BIKE-3-CCA as
well.

KeyGen

- Input: λ, the target quantum security level.

- Output: the private key (h0, h1, σ0, σ1, σ2) and the public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate σ0, σ1, σ2
$←R uniformly at random.

3. Generate g
$←R of odd weight (so |g| ≈ r/2).

4. Compute (f0, f1)← (h1 + gh0, g).
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Encaps

- Input: the public key (f0, f1).

- Output: the encapsulated key K and the cryptogram C = (c, d).

1. Generate z
$←{0, 1}`K uniformly at random.

2. Compute (e, e0, e1)← H(z).

3. Compute C = (c0, c1, d)← (e+ e1f0, e0 + e1f1,K(e0, e1, e)⊕ z).
4. Compute K ← K(e0, e1, e, c, d).

KeyGen (bandwidth optimized)

- Input: λ, the target quantum security level.

- Output: the private key (h0, h1, σ0, σ1, σ2) and the public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate σ0, σ1, σ2
$←R uniformly at random.

3. Generate seedg uniformly at random.

4. Derive g of odd weight from seedg: g
seedg←−−− R (so |g| ≈ r/2).

5. Compute (f0, seedf1)← (h1 + gh0, seedg).

Encaps (bandwidth optimized)

- Input: the public key (f0, seedf1).

- Output: the encapsulated key K and the cryptogram C = (c, d).

1. Derive f1 from seedf1 : f1
seedf1←−−−− R

2. Generate z
$←{0, 1}`K uniformly at random.

3. Compute (e, e0, e1)← H(z).

4. Compute C = (c0, c1, d)← (e+ e1f0, e0 + e1f1,K(e0, e1, e)⊕ z).
5. Compute K ← K(e0, e1, e, c, d).
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Decaps

- Input: the private key (h0, h1, σ0, σ1, σ2) and the cryptogram C = (c, d).

- Output: the decapsulated key K.

1. Parse c as (c0, c1) and compute the syndrome s← c0 + c1h0.

2. Try to decode s (with noise at most t/2) to recover error vector (e′0, e
′
1, e
′).

3. Compute z ← d⊕K(e′0, e
′
1, e
′).

4. If |(e′0, e′1)| 6= t, |(e′| 6= t/2 decoding failed or (e′, e′0, e
′
1) 6= H(z), compute

K ← K(σ0, σ1, σ2, c, d).

5. Else, compute K ← K(e′0, e
′
1, e
′, c, d).

Comparison between the CPA and CCA versions of BIKE-3.
For ease of comparison, we provide a summary in Table 5.

BIKE-3 BIKE-3-CCA

SK (h0, h1) (h0, h1, σ0, σ1, σ2)

with |h0| = |h1| = w/2

PK (f0, f1) = (h1 + gh0, g)

Enc z
$←{0, 1}`K

(e, e0, e1)
$←R3 (e, e0, e1)← H(z)

such that |e0|+ |e1| = t, |e| = t/2

(c0, c1)← (e+ e1f0, e0 + e1f1) (c0, c1, d)← (e+ e1f0, e0 + e1f1,K(e0, e1, e)⊕ z)
K ← K(e0, e1, e) K ← K(e0, e1, e, c, d)

Dec s← c0 + c1h0 ; u← 0

(e′0, e
′
1, e
′)← Decode(s, h0, h1, u)

z ← d⊕K(e′0, e
′
1, e
′)

K ← K(e′0, e
′
1, e
′) K ← K(σ0, σ1, σ2, c, d) K ← K(e′0, e

′
1, e
′, c, d)

Table 5: Algorithm Comparison: BIKE-3

Remarks about CCA Conversions. There are some common traits about
the conversions used to derive the various BIKE-CCA, and some aspects that
change from the IND-CPA counterparts. First of all, the private key now always
includes the additional random string σ = (σ0, σ1) for BIKE-1 and BIKE-2, and
σ = (σ0, σ1, σ2) for BIKE-3. From an implementation point of view, it also includes
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a copy of the public key. This is used during decapsulation in the event of a failure
(of any kind), with the technique known as �implicit rejection�. Secondly, the
shared key K is now extracted not only from (e0, e1) but also from the ciphertext.
This allows to obtain a simpler security reduction in the CCA conversion, as we
will mention later.

2.3 Suggested Parameters

The parameters suggested in this section refer to the security levels indicated by
NIST's call for papers, which relate to the hardness of a key search attack on a
block cipher, like AES. More precisely, we indicate parameters for Levels 1, 3 and
5, corresponding to the security of AES-128, AES-192 and AES-256 respectively.

For the CPA secure variants, the parameters are chosen so that the One-Round
Decoder described in Section 2.4.2 has a failure rate not exceeding 10−7 (validated
through exhaustive simulation). Table 7 summarizes these three parameter sugges-
tions. For the CCA secure variants, the parameters are chosen so that the Back�ip
Decoder described in Section 2.4.3 has the negligible failure rate required by the
IND-CCA security proof (see Section 2.4.5 and Section 6.2).

BIKE-1 and BIKE-2

Security n r w t

Level 1 20,326 10,163 142 134

Level 3 39,706 19,853 206 199

Level 5 65,498 32,749 274 264

BIKE-3

n r w t

22,054 11,027 134 154

43,366 21,683 198 226

72,262 36,131 266 300

DFR2

�

10−7

10−7

10−7

Table 6: Suggested Parameters for CPA Secure Variants.

2.4 Decoding

2.4.1 Preliminaries

�Universal Interoperability�: The decoder has a particular place in the
speci�cation. Its purpose is to �nd the unique solution of a decoding problem.
Only one of the two parties needs to solve that problem and the way it does it will
not change the view of the protocol �KEM and PKE alike.� The only exception

2DFR estimates for IND-CPA variants consider the One-Round Decoder (Section 2.4.2).
3DFR estimates for IND-CCA variants consider the Back�ip Decoder (Section 2.4.3).
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BIKE-1-CCA and BIKE-2-CCA

Security n r w t

Level 1 23,558 11,779 142 134

Level 3 49,642 24,821 206 199

Level 5 81,194 40,597 274 264

BIKE-3-CCA

n r w t

24,538 12,269 134 154

54,086 27,043 198 226

89,734 44,867 266 300

DFR3

�

2−128

2−192

2−256

Table 7: Suggested Parameters for CCA Secure Variants.

to that is the decoding failure rate (DFR). But either one targets static keys and
CCA security, the DFR has to be negligible, and failures never occur. Or one
targets ephemeral keys and CPA security and a decoding failure will just abort
the protocol, and the data which provoked the failure will be discarded. Thus,
except for the DFR constraint for CCA security, the party in charge of decoding
may select any decoder according to the best trade-o� on its platform between
algorithm cost (time/memory), easiness of implementation (software/hardware),
side-channel resistance, . . . This choice does not need to be known from the other
party.

CPA versus CCA: We propose below two variants of the bit �ipping algo-
rithm corresponding to di�erent trade-o�s. The �rst one, �One Round Bit Flipping�
was proposed for the �rst round BIKE proposal. It is currently the fastest and is
suitable for the ephemeral key IND-CPA variant of BIKE. The second, �Back�ip-
ping�, was developed to decrease the DFR estimates according to [37]. For a given
security level, it features the smallest block size and is suitable for the static-key,
IND-CCA variant of BIKE.

Blackbox Decoder: In all variants of BIKE, we will consider the decoding as a
black box running in bounded time and which either returns a valid error pattern

or fails. It takes as arguments a (sparse) parity check matrix H ∈ F(n−k)×n
2 , a

syndrome s ∈ Fn−k2 , and an integer u ≥ 0. Any returned value e is such that the
Hamming distance between eHT and s is smaller than u.

For given BIKE parameters r, w, t and variant, the key features are going to be
the decoding time and the DFR (Decoding Failure Rate). Let R = F2[X]/(Xr−1),
the decoder input (H, s, u) is such that:

� the matrix H is block-circulant of index 2, that is a H = (hT0 hT1 ) ∈ R1×2

such that |h0| = |h1| = w/2
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� the integer u is either 0 (noiseless syndrome decoding, BIKE-1 and BIKE-2)
or t/2 (noisy syndrome decoding, BIKE-3).

� the syndrome s is equal to e′ + e0h0 + e1h1 for some triple (e′, e0, e1) ∈ R3

such that |e′| = u and |e0|+ |e1| = t.

For each parameter set and each BIKE variant, the decoder input is entirely de�ned
by h0, h1, e

′, e0, e1. The DFR is de�ned as the probability for the decoder to fail
when the input (h0, h1, e

′, e0, e1) is distributed uniformly such that |h0| = |h1| =
w/2, |e′| = u, and |e0|+ |e1| = t.

2.4.2 One-Round Decoding

We will use the decoder de�ned in Algorithm 3. As it is de�ned, this algorithm
returns a valid error pattern when it stops but it may not stop. In practice, A
maximum running time is set, when this maximum is reached the algorithm stops
with a failure. For given BIKE parameters r, w, and t, we have n = 2r and k = r.
In addition, we must (1) set values for S and δ and (2) provide a rule for computing
the threshold (instruction 1). For noisy-syndrome decoding (required by BIKE-3
variants), we need to recover the additional error vector. This is accomplished by
computing transpose(s′). In practice, the transpose function inverts the order of
the resulting syndrome s′, except for the �rst element that remains unchanged.

Threshold Selection Rule. This rule derives from [10]. We use the nota-
tion of the algorithm, s = eHT is the input syndrome and e the corresponding
(unknown) error. We denote d = w/2 the column weight of H. Let

π1 =
|s|+X

td
and π0 =

w |s| −X
(n− t)d

where X =
∑
` odd

(`− 1)
r
(
w
`

)(
n−w
t−`
)(

n
t

) .

The counter value |hj ∩ d| follows a distribution very close to a binomial distribu-
tion4 B(d, π1) and B(d, π0) respectively if ej = 1 or ej = 0. From that it follows
that the best threshold is the smallest integer T such that

t

(
d

T

)
πT1 (1− π1)d−T ≥ (n− t)

(
d

T

)
πT0 (1− π0)d−T ,

that is (note that π1 ≥ π0)

T =

⌈
log n−t

t + d log 1−π0
1−π1

log π1
π0

+ log 1−π0
1−π1

⌉
. (1)

4B(n, p) the number of success out of n Bernoulli trials of probability p
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Algorithm 3 One-Round Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: T ← threshold(|s|)
2: for j = 0, . . . , n− 1 do
3: `← min(ctr(H, s, j), T )
4: J` ← J` ∪ {j} // all J` empty initially

5: e← JT
(∗∗)

6: s′ ← s− eHT

7: while |s′| > S do (∗∗∗)

8: for ` = 0, . . . , δ do (∗∗∗)

9: e′ ← check(H, s′, JT−`, d/2)
10: (e, s′)← (e+ e′, s′ − e′HT ) // update error and syndrome

11: e′ ← check(H, s′, e, d/2) (∗∗)

12: (e, s′)← (e+ e′, s′ − e′HT ) // update error and syndrome
13: while |s′| > u do
14: j ← guess_error_pos(H, s′, d/2)
15: (ej , s

′)← (ej + 1, s′ + hj)
(∗)

16: if BIKE-1 or BIKE-2 then
17: return e
18: else
19: return (e, transpose(s′)) // BIKE-3

check(H, s, J, T )
e← 0
for j ∈ J do

if ctr(H, s, j) ≥ T then
ej ← 1

return e

guess_error_pos(H, s, T )
loop // until success

i
$← s (∗∗)

for j ∈ eqi do (∗),(∗∗)

if ctr(H, s, j) ≥ T then
return j

ctr(H, s, j)
return |hj ∩ s| (∗),(∗∗)

threshold(S)
return function of r, w, t, and S

(∗) hj the j-th column of H (as a row vector), eqi the i-th row of H
(∗∗) we identify binary vectors with the set of their non zero positions
(∗∗∗) the algorithm uses two parameters S and δ which depend of r, w, and t
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This value depends only of n = 2r, w = 2d, t = |e| the error weight, and |s|
the syndrome weight. Details can be found in [10]. For any set of parameters
thresholds can be precomputed.

In practice for a given set of parameters the formula (1) is very accurately
approximated, in the relevant range for the syndrome weight, by an a�ne function:

� for BIKE-1 and BIKE-2

� security level 1: T = d13.530 + 0.0069722 |s|e,
� security level 3: T = d15.932 + 0.0052936 |s|e,
� security level 5: T = d17.489 + 0.0043536 |s|e,

� for BIKE-3

� security level 1: T = d13.209 + 0.0060515 |s|e,
� security level 3: T = d15.561 + 0.0046692 |s|e,
� security level 5: T = d17.061 + 0.0038459 |s|e.

2.4.3 Back�ip Decoding

Algorithm 4 is akin to Algorithm 1 but to each �ip it makes, it associates a time-to-
live (a number of iterations during which it is kept). Flips reaching their end-of-life
are re�ipped at the beginning of each iteration. The thresholds are chosen similarly
to previous algorithm assuming that all the previous �ips removed an error. As
in the preceding algorithm, it needs setting a maximum number of iterations. For
noisy-syndrome decoding (required by BIKE-3 variants), we need to recover the
additional error vector. This is accomplished by computing transpose(s′). In
practice, the transpose function inverts the order of the resulting syndrome s′,
except for the �rst element that remains unchanged.

Threshold Selection Rule threshold(S, t′). As before we de�ne the fol-
lowing probabilities:

π1 =
S +X

t′d
and π0 =

wS −X
(n− t′)d

where X =
∑
` odd

(`− 1)
r
(
w
`

)(
n−w
t′−`
)(

n
t′

) .

Then threshold(S, t′) is the smallest T such that

t′
(
d

T

)
πT1 (1− π1)d−T ≥ (n− t′)

(
d

T

)
πT0 (1− π0)d−T .
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Algorithm 4 Backflipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: e← 0 ; time← 1 ; F ← 0 // Fj = time-of-death of j
2: while

∣∣s− eHT
∣∣ ≤ u do

3: for j such that Fj = time do // Undo �ips reaching their time-of-death
4: ej ← 1− ej ; Fj ← 0

5: s′ ← s− eHT

6: T ← threshold(|s′| , t− |F |)
7: time← time + 1
8: for j ∈ {0, . . . , n− 1} do
9: if |s′ ∩ hj | ≥ T then // hj the j-th column of H
10: ej ← 1− ej ; Fj ← 0 if Fj ≥ time else time + ttl(|s′ ∩ hj | − T )

11: if BIKE-1-CCA or BIKE-2-CCA then
12: return e
13: else
14: return (e, transpose(s′)) // BIKE-3-CCA

Since t′ is guessed optimistically (we assume that only errors are �ipped in the
algorithm: t′ = t− |F |), it can happen that π1 > 1. In this case threshold(S, t′)
is the smallest T such that

1 ≥ (n− t′)
(
d

T

)
πT0 (1− π0)d−T .

Time-to-live Rule ttl(δ). The time-to-live of a �ip is determined using a sat-
urating a�ne function in the di�erence between the counter value and the thresh-
old,

� for BIKE-1 and BIKE-2

� security level 1: ttl(δ) = max(1,min(5, b1.1 + 0.45 δc)),
� security level 3: ttl(δ) = max(1,min(5, b1.41 + 0.36 δc)),
� security level 5: ttl(δ) = max(1,min(5, b1 + 0.45 δc)),

� for BIKE-3

� security level 1: ttl(δ) = max(1,min(5, b1.16 + 0.46 δc)),
� security level 3: ttl(δ) = max(1,min(5, b1.4 + 0.4 δc)),
� security level 5: ttl(δ) = max(1,min(5, b0.9 + 0.44 δc)).
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2.4.4 Other Decoders

Other trade-o�s are indeed possible, for instance soft decision decoders. They have
more complex logic and arithmetic, but techniques as the Scaled Sum-Product
Algorithm de�ned in [26] may lead to a lower DFR.

2.4.5 Estimating the DFR for High Block Size

The Low Impact of Block Size on Computational Assumptions.
The block size r must be chosen large enough to allow e�cient decoding. In practice
one must choose r = Ω(wt). The higher r the lower the DFR. On the other hand,
as stated in �5.1 the best known attacks are of order 2ct or 2cw with a constant
c which only depends of the code rate (which can be either 1/2 or 1/3). This is
corrected by a factor polynomial in r which is very small in practice. Moreover, if
the block size varies, the code length and dimension vary in the same proportion
and the code rate, thus the constant c in the exponent, remains the same. An
interesting consequence is that if w and t are �xed, a moderate modi�cation of r
(say plus or minus 50%) will not signi�cantly a�ect the resistance against the best
known key and message attacks.

Estimating the DFR by Extrapolation. Therefore, increasing the block
size while leaving the row weight w and the error weight t �xed is a valid strategy
to reach lower DFR is needed.

A DFR as low as 2−256 is desirable for some levels of security. However mea-
suring such a low probability is clearly out of reach from mere simulations.

In [37] the simple bit �ipping Algorithm 5 was considered. In each one of
its iterations, only one simple operation is performed. Using results from [10],
a markovian model of this decoder was derived. This model allows for a fast
estimation of the DFR of this algorithm for any set of parameters. In order to
validate the model, the DFR obtained with an implementation of the algorithm
and the values derived from the model were compared. It was observed that, while
slightly optimistic, the model follows the same evolution as the simulations.

Increasing the range of values for the block size to include values were any
failure is hardly observable with simulations, the following observations could be
made on the logarithm of the DFR in function of the block size:

� it is always convex and strictly decreasing;

� it is superlinear in a �rst phase;

� it is then linear for higher block sizes.

Assuming the �rst property holds for any other �bit �ipping-like� decoder, extrap-
olating the DFR can be done with a simple linear regression from the DFR for
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Algorithm 5 Step-by-Step Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
e← 0
while

∣∣s− eHT
∣∣ ≤ u do

s′ ← s− eHT

T ← threshold(context)
j ← sample(context)
if |s′ ∩ hj| ≥ T then

ej ← 1− ej
return e

two di�erent block sizes. Given the second property, the block sizes used for those
two measures should be as high as possible. This is consistent with the asymptotic
analysis of Theorem 1 and compatible with all simulations conducted so far.

2.5 Auxiliary Functions

Possible realizations of the auxiliary functions required by BIKE are described
next. Other techniques can be used as long as they meet the target security level.

2.5.1 Pseudorandom Random Generators

Three types of pseudorandom bits stream generation are considered: no constraints
on the output weight (Alg. 6), odd weight (Alg. 7), and speci�c weight w (Alg. 8).
The common building block for them is AES-CTR-PRF based on AES-256, in CTR
mode (following NIST SP800-90A guidelines [3]). For typical BIKE parameters the
number of calls to AES with a given key is way below the restrictions on using AES
in CTR mode. We remark that such AES-CTR-PRF generator is very e�cient on
modern processors equipped with dedicated AES instructions (e.g., AES-NI).

Algorithm 6 GenPseudoRand(seed, len)

Require: seed (32 bytes)
Ensure: z̄ (len pseudo-random bits z embedded in array of bytes).
1: s = AES-CTR-INIT(seed, 0, 232 − 1)
2: z = truncatelen (AES-CTR-PRF (s, len))
3: return z̄
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Algorithm 7 GenPseudoRandOddWeight(seed, len)

Require: seed (32 bytes), len
Ensure: z̄ (len pseudorandom bits z of odd weight, in a byte array).
1: z = GenPseudoRand(seed, len)
2: if weight(z) is even then z[0] = z[0] ⊕1
3: return z̄

Algorithm 8 WAES-CTR-PRF(s, wt, len)

Require: s (AES-CTR-PRF state), wt (32 bits), len
Ensure: A list (wlist) of wt bit-positions in [0, . . . , len− 1], updated s.
1: wlist= φ; valid_ctr = 0
2: while valid_ctr < wt do
3: (pos, s) = AES-CTR-PRF(s, 4)
4: if ((pos < len) AND (pos 6∈ wlist)) then
5: wlist = wlist ∪ {pos}; valid_ctr = valid_ctr + 1

6: return wlist, s

3 Performance Analysis (2.B.2)

In this section, we discuss the performance of the various BIKE �ows with respect
to memory, latency and communication bandwidth. The performance numbers
that we will present in sections 3.1, 3.2, 3.3, 3.4 and 3.5 refer to our reference
code implementation, while section 3.9 describes various optimizations and their
corresponding latency gains.

The platform used in the experiments was equipped with an Intel® CoreTM

i5-6260U CPU running at 1.80GHz. This platform has 32 GB RAM, 32K L1d and
L1i cache, 256K L2 cache, and 4,096K L3 cache. Intel® Turbo Boost and Intel®

Hyper-Threading technologies were all disabled. For each benchmark, the process
was executed 25 times to warm-up the caches, followed by 100 iterations that were
clocked (using the RDTSC instruction) and averaged. To minimize the e�ect of
background tasks running on the system, each such experiment was repeated 10
times, and averaged. Our code was compiled using gcc/g++ 5.4.0 (build 20160609)
with OpenSSL library (v1.0.2g, 1 Mar 2016) and NTL library (v11.3.2). The NTL
library was built with support for fast polynomial multiplication from Lib GF2X
v1.2 (see README �le in the implementation folders for instructions about how
to build the NTL library in such a way).
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Regarding memory requirements, we remark that the private keys for the IND-
CPA secure BIKE variants are composed by vectors (h0, h1) ∈ R with |h0| =
|h1| = w/2. Each element can either be represented by r bits or, in a more
compact way, by listing the w/2 non-zero positions, which yields a (w2 · dlog2(r)e)-
bits representation. Thus, the total private key size is (w · dlog2(r)e)-bits. Since
dlog2(r)e < 16 is true for all the proposed parameter sets, implementers may prefer
(for the sake of simplicity) to store the private key as a sequence of w elements
of 16-bits each. For the IND-CCA secure variants of BIKE, instead, the private
key is (n + w · dlog2(r)e) bits long. The additional n bits are needed to store the
(σ0, σ1) components. Depending on the application, users may want to explore the
possibility of generating the private key on the �y from a cryptographically secure
seed (memory vs. latency tradeo�).

3.1 Performance of BIKE-1

3.1.1 Memory Cost

Table 8 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 1, 988 3, 090 4, 110

Public key n 20, 326 39, 706 65, 498

Ciphertext n 20, 326 39, 706 65, 498

Table 8: Private Key, Public Key and Ciphertext Size in Bits.

3.1.2 Communication Bandwidth

Table 9 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 20, 326 39, 706 65, 498

Resp. → Init. (c0, c1) n 20, 326 39, 706 65, 498

Table 9: Communication Bandwidth in Bits.

28



3.1.3 Software Latency (Reference Implementation)

Operation Level 1 Level 3 Level 5

Key Generation 210, 968 403, 995 723, 125

Encapsulation 240, 312 438, 516 794, 184

Decapsulation 3, 128, 909 8, 332, 917 20, 045, 558

Table 10: Latency Performance in Number of Cycles.

3.2 Performance of BIKE-2

3.2.1 Memory Cost

Table 11 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 1, 988 3, 090 4, 110

Public key r 10, 163 19, 853 32, 749

Ciphertext r 10, 163 19, 853 32, 749

Table 11: Private Key, Public Key and Ciphertext Size in Bits.

3.2.2 Communication Bandwidth

Table 12 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. f1 r 10, 163 19, 853 32, 749

Resp. → Init. c r 10, 163 19, 853 32, 749

Table 12: Communication Bandwidth in Bits.
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3.2.3 Software Latency (Reference Implementation)

Operation Level 1 Level 3 Level 5

Key Generation 4, 790, 862 7, 302, 732 14, 052, 840

Encapsulation 140, 993 251, 472 415, 921

Decapsulation 3, 011, 277 8, 283, 563 19, 805, 266

Table 13: Latency Performance in Number of Cycles.

3.3 Performance of BIKE-3

3.3.1 Memory Cost

Table 14 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 1, 876 2, 970 4, 256

Public key n 22, 054 43, 366 72, 262

Ciphertext n 22, 054 43, 366 72, 262

Table 14: Private Key, Public Key and Ciphertext Size in Bits.

3.3.2 Communication Bandwidth

Table 15 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 22,054 43,366 72,262

Resp. → Init. (c0, c1) n 22,054 43,366 72,262

Table 15: Communication Bandwidth in Bits.
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3.3.3 Software Latency (Reference Implementation)

Operation Level 1 Level 3 Level 5

Key Generation 169, 892 338, 196 547, 579

Encapsulation 235, 955 481, 560 753, 546

Decapsulation 3, 949, 897 9, 013, 793 20, 995, 904

Table 16: Latency Performance in Number of Cycles.

3.4 Performance of bandwidth-optimized BIKE-3

3.4.1 Memory Cost

Table 17 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 1, 876 2, 970 4, 256

Public key r + |seed| 11, 283 21, 939 36, 387

Ciphertext n 22, 054 43, 366 72, 262

Table 17: Private Key, Public Key and Ciphertext Size in Bits. |seed| denotes the size of
the seed used to represent f1 = g, which is 256 bits for all security levels.

3.4.2 Communication Bandwidth

Table 18 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, seedf1) r + |seed| 11, 283 21, 939 36, 387

Resp. → Init. (c0, c1) n 22,054 43,366 72,262

Table 18: Communication Bandwidth in Bits. |seed| denotes the size of the seed used to
represent f1 = g, which is 256 bits for all security levels.
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3.4.3 Software Latency (Reference Implementation)

Decapsulation numbers are omitted since they are not a�ected by this optimization.

Operation Level 1 Level 3 Level 5

Key Generation 172, 909 340, 422 548, 354

Encapsulation 305, 395 585, 261 972, 596

Table 19: Latency Performance in Number of Cycles.

3.5 Performance of BIKE-1-CCA

3.5.1 Memory Cost

Table 20 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key n+ w · dlog2(r)e 25, 546 52, 732 85, 578

Public key n 23, 558 49, 642 81, 194

Ciphertext n 23, 558 49, 642 81, 194

Table 20: Private Key, Public Key and Ciphertext Size in Bits.

3.5.2 Communication Bandwidth

Table 21 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 23, 558 49, 642 81, 194

Resp. → Init. (c0, c1) n 23, 558 49, 642 81, 194

Table 21: Communication Bandwidth in Bits.
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3.5.3 Software Latency (Reference Implementation)

Operation Level 1 Level 3 Level 5

Key Generation 358, 822 773, 845 1, 153, 100

Encapsulation 343, 171 712, 292 1, 016, 936

Decapsulation 4, 146, 060 8, 862, 030 17, 963, 677

Table 22: Latency Performance in Number of Cycles.

3.6 Performance of BIKE-2-CCA

3.6.1 Memory Cost

Table 23 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key n+ w · dlog2(r)e 25, 546 52, 732 85, 578

Public key r 11, 779 24, 821 40, 597

Ciphertext r + |d| 12, 035 25, 077 40, 853

Table 23: Private Key, Public Key and Ciphertext Size in Bits.

3.6.2 Communication Bandwidth

Table 24 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. f1 r 11, 779 24, 821 40, 597

Resp. → Init. (c, d) r + |d| 12, 035 25, 077 40, 853

Table 24: Communication Bandwidth in Bits.
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3.6.3 Software Latency (Reference Implementation)

Operation Level 1 Level 3 Level 5

Key Generation 6, 319, 624 9, 886, 723 16, 952, 399

Encapsulation 195, 900 394, 472 573, 452

Decapsulation 4, 124, 665 8, 569, 981 17, 629, 047

Table 25: Latency Performance in Number of Cycles.

3.7 Performance of BIKE-3-CCA

3.7.1 Memory Cost

Table 26 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key n+ w · dlog2(r)e 26, 414 57, 056 93, 990

Public key n 24, 538 54, 086 89, 734

Ciphertext n+ |d| 24, 794 54, 342 89, 990

Table 26: Private Key, Public Key and Ciphertext Size in Bits.

3.7.2 Communication Bandwidth

Table 27 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 24, 538 54, 086 89, 734

Resp. → Init. (c0, c1, d) n+ |d| 24, 794 54, 342 89, 990

Table 27: Communication Bandwidth in Bits.
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3.7.3 Software Latency (Reference Implementation)

Operation Level 1 Level 3 Level 5

Key Generation 281, 736 604, 945 1, 030, 870

Encapsulation 293, 478 615, 552 1, 147, 172

Decapsulation 5, 654, 012 9, 589, 672 20, 212, 826

Table 28: Latency Performance in Number of Cycles.

3.8 Performance of bandwidth-optimized BIKE-3-CCA

3.8.1 Memory Cost

Table 29 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key n+ w · dlog2(r)e 26, 414 57, 056 93, 990

Public key r + |seed| 12, 525 27, 299 45, 123

Ciphertext n+ |d| 24, 794 54, 342 89, 990

Table 29: Private Key, Public Key and Ciphertext Size in Bits. |seed| denotes the size of
the seed used to represent f1 = g, which is 256 bits for all security levels.

3.8.2 Communication Bandwidth

Table 30 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, seedf1) r + |seed| 12, 525 27, 299 45, 123

Resp. → Init. (c0, c1, d) n+ |d| 24, 794 54, 342 89, 990

Table 30: Communication Bandwidth in Bits. |seed| denotes the size of the seed used to
represent f1 = g, which is 256 bits for all security levels.
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3.8.3 Software Latency (Reference Implementation)

Decapsulation numbers are omitted since they are not a�ected by this optimization.

Operation Level 1 Level 3 Level 5

Key Generation 279, 324 606, 828 1, 067, 346

Encapsulation 345, 706 752, 956 1, 407, 976

Table 31: Latency Performance in Number of Cycles.

3.9 BIKE-2 Batch Key Generation (Optimized Imple-
mentation)

Optional algorithmic optimizations for BIKE and the corresponding performance
gains are discussed next.

BIKE-2 key generation needs to compute a (costly) polynomial inversion, as
described in Section 2.1.2. To reduce the impact of this costly operation and still
bene�t from the lower communication bandwidth o�ered by BIKE-2, we propose a
batch version of BIKE-2 key generation. The main bene�t of this approach is that
only one polynomial inversion is computed for every N key generations, assuming
a prede�ned N ∈ N, instead of one inversion per key generation.

This technique is based on Montgomery's trick [34] and assumes that multi-
plication is fairly less expensive than inversion. As a toy example, suppose that
one needs to invert two polynomials x, y ∈ R. Instead of computing the inverse of
each one separately, it is possible to compute them with one inversion and three
multiplications: set tmp = x · y, inv = tmp−1 and then recover x−1 = y · inv and
y−1 = x · inv. This can be easily generalized to N > 2 polynomials: in this case,
2N multiplications are needed and inverses need to be recovered one at a time
and in order. Because of this, our implementation requires the maintenance of a
global variable 0 ≤ keyindex < N that must be accessible only to the legitimate
party willing to generate BIKE-2 keys and increased after each key generation.
Algorithm 9 describes this optimization. Most of the work is done in the �rst
key generation (keyindex = 0). In this way, the amortized cost of BIKE-2 key
generation is reduced signi�cantly as illustrated in Table 32 and Table 33.
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Algorithm 9 BIKE-2 Batch Key Generation

Require: keyindex, N ∈ N, code parameters (n, k, w)
Ensure: (h0,0, . . . , h0,N−1, h1) ∈ RN+1, |h0,i|0≤i<N = |h1| = w

1: Sample h1
$←R such that |h1| = w

2: if keyindex = 0 then
3: Sample h0,i

$←R such that |h0,i| = w for 0 < i < N
4: prod0,0 = h0,0
5: prod0,i = prod0,i−1 · h0,i, for 1 ≤ i < N

6: prod1,N−1 = prod−10,N−1
7: prod1,i = prod1,i+1 · h0,i+1, for N − 2 ≥ i > 0
8: inv = prod1,1 · h0,1
9: else
10: inv = prod1,keyindex · prod0,keyindex−1
11: h← h1 · inv
12: keyindex← keyindex + 1

13: return (h0,keyindex, h1, h)

Operation Reference Batch Gain (%)

Level 1 4, 790, 862 312, 371 93.47%

Level 3 7, 302, 732 583, 046 92.01%

Level 5 14, 052, 840 1, 085, 539 92.27%

Table 32: BIKE-2 Batch Key Generation Performance Gain (in cycles, for N = 100).

Operation Reference Batch Gain (%)

Level 1 6, 319, 624 427, 997 93.22%

Level 3 9, 886, 723 915, 874 90.73%

Level 5 16, 952, 399 1, 654, 914 90.23%

Table 33: BIKE-2-CCA Batch Key Generation Performance Gain (in cycles, for N = 100).

We stress that an implementer interested in the bene�ts o�ered by BIKE-2
batch key generation will need to meet the additional security requirements of
protecting from adversaries and securely updating the variables keyindex, prod0
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and prod1. It is also important to stress that the keys generated through this batch
process are not related to each other. Finally, we remark that the use (or not) of
the batch optimization does not impact on the encapsulation and decapsulation
processes described in Section 2.1.2.

3.10 Additional Software Implementation

To illustrate the potential performance that BIKE code may achieve when running
on modern platforms, we report some results of an additional implementation.
These preliminary BIKE-1 and BIKE-2 results can be expected to be further im-
proved.

The performance is reported in processor cycles (lower is better), re�ecting the
performance per a single core. The results were obtained with the same measure-
ment methodology declared in Section 3. The results are reported in Tables 34,
35, and 36 for BIKE-1, and in Tables 37, 38, and 39 for BIKE-2.

The additional implementation code. The core functionality was written
in x86 assembly, and wrapped by assisting C code. The implementations use
the PCLMULQDQ, AES−NI and the AVX2 and AVX512 architecture extensions.
The code was compiled with gcc (version 5.4.0) in 64-bit mode, using the "O3"
Optimization level, and run on a Linux (Ubuntu 16.04.3 LTS) OS. Details on the
implementation and optimized components are provided in [16], and the underlying
primitives are available in [18].

The benchmarking platform. The experiments were carried out on a plat-
form equipped with the latest 8th Generation Intel® CoreTM processor ("Kaby
Lake") - Intel® Xeon® Platinum 8124M CPU at 3.00 GHz Core® i5− 750. The
platform has 70 GB RAM, 32K L1d and L1i cache, 1, 024K L2 cache, and 25, 344K
L3 cache. It was con�gured to disable the Intel® Turbo Boost Technology, and
the Enhanced Intel Speedstep® Technology.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.09 0.11 1.13 0.20 0.15 5.30

AVX512 0.09 0.11 1.02 0.19 0.13 4.86

Table 34: Performance (in millions of cycles) of BIKE-1 Level 1.
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� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.25 0.28 3.57 0.45 0.36 16.74

AVX512 0.25 0.27 2.99 0.45 0.33 15.26

Table 35: Performance (in millions of cycles) of BIKE-1 Level 3.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.25 0.29 2.75 0.67 0.42 9.84

AVX512 0.25 0.27 2.24 0.69 0.36 8.27

Table 36: Performance (in millions of cycles) of BIKE-1 Level 5.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 11.99 0.27 2.70 12.45 0.39 10.74

AVX512 11.99 0.25 2.14 12.34 0.34 8.93

Table 39: Performance (in millions of cycles) of BIKE-2 Level 5.

3.11 Hardware Implementation

For our hardware reference design we assume a common use-case of an embedded
device communicating with an server or cloud infrastructure. In this setting a
hardware device represents only one endpoint in the communcation so that we
provide hardware design that features the required KeyGen and Encaps of BIKE.
Speci�cally, we implemented KeyGen and Encaps of BIKE-1, Level 1 on a Xilinx
Artix-7 (xc7a35tcpg236-1) FPGA following a similar concept as proposed in [39]
but took advantage of additional optimizations enabled by the BIKE construction.
All details are listed in the below.
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� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 4.38 0.09 1.12 4.46 0.12 5.55

AVX512 4.38 0.08 0.86 4.45 0.11 5.12

Table 37: Performance (in millions of cycles) of BIKE-2 Level 1.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 7.77 0.17 2.88 8.04 0.27 17.36

AVX512 7.79 0.18 3.48 8.05 0.23 15.63

Table 38: Performance (in millions of cycles) of BIKE-2 Level 3.

3.11.1 Reference Implementation

The �rst implementation of KeyGen and Encaps is based on the approach from [39]
which was optimized to achieve a small hardware footprint. The encoding step is
performed by storing the key in one true dual-port BRAM. Each clock cycle 64 bit
of the key are read from the memory, shifted by one bit and are wrote back to
the memory. This will not only lead to a one bit shifted 32 bit word but also to a
shift of the content by one entire address. However, when reading 64 bit of the key,
these bits are added to the current intermediate results, which are also stored in a
true dual-port BRAM. Before the encoding is started, the error is already stored
in that memory such that a �nal addition of the error is not necessary.

The reference design of KeyGen follows a straightforward implementation using
a non-constant time sampling operation. Since the generation of the public key also
requires an encoding step, the same module as for Encaps is used. The memory
layout for the keys and for the error is done by storing the LSB at address zero.
This is reversed for the sampled message m and g. Here the MSB is stored at
address zero.

Table 40 shows the implementation results for the state-of-the-art implemen-
tation excluding the additional hash function. In summary, this implementation
requires 276 Slices and 5 BRAMs of the available hardware resources. To �nish
KeyGen and Encaps, the implementation requires 6 504 975 clock cycles. The maxi-
mum usable frequency turned out to be 162.6 MHz which leads to a 40.01 ms delay
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Table 40: Reference Implementation of KeyGen plus Encaps (excluding hash).

Resources

Logic Memory Area BRAM

LUT FF Slices Tiles

BIKE-1, Level 1 918 236 276 5

KeyGen 3

Sample SK 134 38 58 1

Sample G 88 30 32 1

Compute PK 130 51 78 1

Encaps 366 103 125 2

Sample E 68 20 35 1

Sample M 23 16 10 1

Encoding 141 60 87 0

from starting KeyGen to �nishing Encaps.
In Table 41 we summarized the implementation results for the state-of-the-art

implementation using SHA-384 as hash function. The footprint increases from
276 Slices to 1 242 Slices and it requires one more BRAM module to store the sam-
pled error. Since the hash function can be freely chosen and is not optimized in
our design, this implementation results should only be understand as an example.

Table 41: Reference Implementation of KeyGen plus Encaps (including hash).

Resources

Logic Memory Area BRAM

LUT FF Slices Tiles

BIKE-1, Level 1 4 449 2 765 1 242 6

KeyGen 3

Sample SK 134 38 60 1

Sample G 89 30 37 1

Compute PK 130 51 88 1

Encaps 3 896 2 632 1 118 3

Sample E 68 20 42 1

Sample M 23 16 10 1

Encoding 141 60 92 0

SHA-384 3 534 2 529 1 002 1
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3.11.2 Improvement I

BIKE enables a scalable optimization a trade-o� between resource cost and perfor-
mance. To improve performance we split up the keys in a �rst optimization level
and used one true dual-port BRAM to store each lower part of the keys and the
error (f0, h0, e0) and one true dual-port BRAM to store each upper part of the
keys and the error (f1, h1, e1). This allows us to work with an increased data-bus
of 128 bit for each key and the sampled error. Since we only use one single bit of g
and m for one row of the keys, we do not need to double up the memory for these
polynomials.

The implementation results of this �rst level of optimization can be found in
Table 42 and Table 43. The �rst table provides the results without using any hash
function and the second one uses SHA-384 again. Excluding the hash function
this results in a hardware footprint of 379 Slices and 8 BRAMs which increases the
utilization by only 37.32 % while decreasing the required clock cycles by 50.32 %
to 3 273 144. We determined the maximum frequency to 161.3 MHz which allows
us to �nish KeyGen and Encaps within 20.29 ms.

Table 42: Optimized Results (Level 1) for KeyGen plus Encaps (excluding hash).

Resources

Logic Memory Area BRAM

LUT FF Slices Tiles

BIKE-1, Level 1 1 233 231 379 8

KeyGen 5

Sample SK 134 38 62 2

Sample G 89 30 38 1

Compute PK 187 49 114 2

Encaps 518 100 190 3

Sample E 102 20 51 2

Sample M 23 16 10 1

Encoding 195 57 123 0

3.11.3 Improvement II

In the second level of optimization we doubled the allocated memory for the secret
and public key. After the sampling of the secret key and after computing the public
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Table 43: Optimized Results (Level 1) for KeyGen plus Encaps (including hash).

Resources

Logic Memory Area BRAM

LUT FF Slices Tiles

BIKE-1, Level 1 4 814 2 760 1 381 9

KeyGen 5

Sample SK 134 38 73 2

Sample G 88 30 35 1

Compute PK 187 49 111 2

Encaps 4 096 2 629 1 180 4

Sample E 147 20 74 2

Sample M 23 16 11 1

Encoding 195 57 120 0

SHA-384 3 533 2 529 1 012 1

key, we performed after both operations a preparatory shift of the keys by

dR_BITS/32e
2

· 32 = 5 088 bits. (2)

The shifted keys will be denoted by sk′ and pk′ respectively. Using a true dual-port
BRAM for g and m as well, allows us to read out, multiply and shift the upper
and lower part of the circulant matrices in parallel. Since the multiplication is
now based on two bits of g or m, we have four di�erent cases to calculate the new
intermediate result Inew. The following example shows them for the multiplication
of the secrete key with g which is controlled by the two bits gi and gj of g .

Inew =


Iold when gi = 0; gj = 0

Iold ⊕ skold when gi = 1; gj = 0

Iold ⊕ sk′old when gi = 0; gj = 1

Iold ⊕ skold ⊕ sk′old when gi = 1; gj = 1

(3)

This optimization technique increases the hardware utilization by 62.27 % in
terms of slices and requires four additional BRAM tiles compared to the �rst op-
timized design. The number of required clock cycles decreases from 3 273 144 to
1 639 461. Using a maximum frequency of 151.5 MHz, �nishes KeyGen and Encaps

within 10.82 ms. This is roughly a speed up by a factor of four compared to the
state-of-the-art implementation. As well as for the previous approaches, we provide
an implementation including a SHA-384 core. The result is shown in Table 45.
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Table 44: Optimized Results (Level 2) for KeyGen plus Encaps (excluding hash).

Resources

Logic Memory Area BRAM

LUT FF Slices Tiles

BIKE-1, Level 1 1 895 357 615 12

KeyGen 9

Sample SK 134 38 59 2

Sample G 88 29 38 1

Compute PK 349 50 181 2

Preparatory Shifts 154 134 82 4

Encaps 668 89 213 3

Sample E 95 16 39 2

Sample M 23 16 9 1

Encoding 343 50 155 0

Table 45: Optimized Results (Level 2) for KeyGen plus Encaps (including hash).

Resources

Logic Memory Area BRAM

LUT FF Slices Tiles

BIKE-1, Level 1 5 465 2 886 1 559 13

KeyGen 9

Sample SK 134 38 68 2

Sample G 88 29 34 1

Compute PK 348 50 160 2

Preparatory Shifts 154 134 91 4

Encaps 4 235 2 618 1 218 4

Sample E 140 16 72 2

Sample M 23 16 8 1

Encoding 343 50 171 0

SHA-384 3 522 2 529 994 1

3.11.4 Comparison

In Table 46 we provide a concluding overview about all six implementations. It
is shown that BIKE including further optimization can outperform our reference
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(and previously reported implementations) by a factor of four in terms of clock
cycles. This is remarkable since the improvement is reached by only spending 2.23
times more slices and 12 instead of 5 BRAM tiles, respectively.

Table 46: Comparison of all implementations.

Resources Throughput

Area BRAM Clock Cycles Frequency Time

Slices Tiles CC MHz ms

Reference 276 5 6 504 975 162.6 40.01

Reference + Hash 1 242 6 6 504 975 163.9 39.68

Opt. Level 1 379 8 3 273 144 161.3 20.29

Opt. Level 1 + Hash 1 381 9 3 273 144 161.3 20.29

Opt. Level 2 615 12 1 639 461 151.5 10.82

Opt. Level 2 + Hash 1 559 13 1 639 461 161.3 10.16

3.11.5 Enhanced Levels of Optimization

The generic optimization technique discussed in Section 3.11.3 can be continuously
applied for increased performance at higher resource cost. According to Equation 3
the required hardware resources is estimated to grow by a quadratic factor. A
rough estimation about the required hardware resources depending on the number
of clock cycles is shown in Figure 1.
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Figure 1: Estimation for further levels of optimization.
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4 Known Answer Values � KAT (2.B.3)

4.1 IND-CPA Variants

4.1.1 KAT for BIKE-1

The KAT �les of BIKE-1 are available in:

� req �le: KAT/INDCPA/BIKE1/PQCkemKAT_BIKE1-Level1_2542.req

� rsp �le: KAT/INDCPA/BIKE1/PQCkemKAT_BIKE1-Level1_2542.rsp

� req �le: KAT/INDCPA/BIKE1/PQCkemKAT_BIKE1-Level3_4964.req

� rsp �le: KAT/INDCPA/BIKE1/PQCkemKAT_BIKE1-Level3_4964.rsp

� req �le: KAT/INDCPA/BIKE1/PQCkemKAT_BIKE1-Level5_8188.req

� rsp �le: KAT/INDCPA/BIKE1/PQCkemKAT_BIKE1-Level5_8188.rsp

4.1.2 KAT for BIKE-2

The KAT �les of BIKE-2 are available in:

� req �le: KAT/INDCPA/BIKE2/PQCkemKAT_BIKE2-Level1_2542.req

� rsp �le: KAT/INDCPA/BIKE2/PQCkemKAT_BIKE2-Level1_2542.rsp

� req �le: KAT/INDCPA/BIKE2/PQCkemKAT_BIKE2-Level3_4964.req

� rsp �le: KAT/INDCPA/BIKE2/PQCkemKAT_BIKE2-Level3_4964.rsp

� req �le: KAT/INDCPA/BIKE2/PQCkemKAT_BIKE2-Level5_8188.req

� rsp �le: KAT/INDCPA/BIKE2/PQCkemKAT_BIKE2-Level5_8188.rsp

4.1.3 KAT for BIKE-3

The KAT �les of BIKE-3 are available in:

� req �le: KAT/INDCPA/BIKE3/PQCkemKAT_BIKE3-Level1_2758.req

� rsp �le: KAT/INDCPA/BIKE3/PQCkemKAT_BIKE3-Level1_2758.rsp

� req �le: KAT/INDCPA/BIKE3/PQCkemKAT_BIKE3-Level3_5422.req

� rsp �le: KAT/INDCPA/BIKE3/PQCkemKAT_BIKE3-Level3_5422.rsp

� req �le: KAT/INDCPA/BIKE3/PQCkemKAT_BIKE3-Level5_9034.req

� rsp �le: KAT/INDCPA/BIKE3/PQCkemKAT_BIKE3-Level5_9034.rsp
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4.1.4 KAT for bandwidth-optimized BIKE-3

The KAT �les of the bandwidth-optimized BIKE-3 variant are available in:

� req �le: KAT/INDCPA/BIKE3-SEED/PQCkemKAT_BIKE3-Level1_2758.req

� rsp �le: KAT/INDCPA/BIKE3-SEED/PQCkemKAT_BIKE3-Level1_2758.rsp

� req �le: KAT/INDCPA/BIKE3-SEED/PQCkemKAT_BIKE3-Level3_5422.req

� rsp �le: KAT/INDCPA/BIKE3-SEED/PQCkemKAT_BIKE3-Level3_5422.rsp

� req �le: KAT/INDCPA/BIKE3-SEED/PQCkemKAT_BIKE3-Level5_9034.req

� rsp �le: KAT/INDCPA/BIKE3-SEED/PQCkemKAT_BIKE3-Level5_9034.rsp

4.2 IND-CCA Variants

4.2.1 KAT for BIKE-1-CCA

The KAT �les of BIKE-1-CCA are available in:

� req �le: KAT/INDCCA/BIKE1CCA/PQCkemKAT_BIKE1-Level1_8838.req

� rsp �le: KAT/INDCCA/BIKE1CCA/PQCkemKAT_BIKE1-Level1_8838.rsp

� req �le: KAT/INDCCA/BIKE1CCA/PQCkemKAT_BIKE1-Level3_18618.req

� rsp �le: KAT/INDCCA/BIKE1CCA/PQCkemKAT_BIKE1-Level3_18618.rsp

� req �le: KAT/INDCCA/BIKE1CCA/PQCkemKAT_BIKE1-Level5_30450.req

� rsp �le: KAT/INDCCA/BIKE1CCA/PQCkemKAT_BIKE1-Level5_30450.rsp

4.2.2 KAT for BIKE-2-CCA

The KAT �les of BIKE-2-CCA are available in:

� req �le: KAT/INDCCA/BIKE2CCA/PQCkemKAT_BIKE2-Level1_8838.req

� rsp �le: KAT/INDCCA/BIKE2CCA/PQCkemKAT_BIKE2-Level1_8838.rsp

� req �le: KAT/INDCCA/BIKE2CCA/PQCkemKAT_BIKE2-Level3_18618.req

� rsp �le: KAT/INDCCA/BIKE2CCA/PQCkemKAT_BIKE2-Level3_18618.rsp

� req �le: KAT/INDCCA/BIKE2CCA/PQCkemKAT_BIKE2-Level5_30450.req

� rsp �le: KAT/INDCCA/BIKE2CCA/PQCkemKAT_BIKE2-Level5_30450.rsp
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4.2.3 KAT for BIKE-3-CCA

The KAT �les of BIKE-3-CCA are available in:

� req �le: KAT/INDCCA/BIKE3CCA/PQCkemKAT_BIKE3-Level1_10738.req

� rsp �le: KAT/INDCCA/BIKE3CCA/PQCkemKAT_BIKE3-Level1_10738.rsp

� req �le: KAT/INDCCA/BIKE3CCA/PQCkemKAT_BIKE3-Level3_23667.req

� rsp �le: KAT/INDCCA/BIKE3CCA/PQCkemKAT_BIKE3-Level3_23667.rsp

� req �le: KAT/INDCCA/BIKE3CCA/PQCkemKAT_BIKE3-Level5_39263.req

� rsp �le: KAT/INDCCA/BIKE3CCA/PQCkemKAT_BIKE3-Level5_39263.rsp

4.2.4 KAT for bandwidth-optimized BIKE-3-CCA

The KAT �les of the bandwidth-optimized BIKE-3-CCA variant are available in:

� req �le: KAT/INDCCA/BIKE3CCA-SEED/PQCkemKAT_BIKE3-Level1_9236.req

� rsp �le: KAT/INDCCA/BIKE3CCA-SEED/PQCkemKAT_BIKE3-Level1_9236.rsp

� req �le: KAT/INDCCA/BIKE3CCA-SEED/PQCkemKAT_BIKE3-Level3_20318.req

� rsp �le: KAT/INDCCA/BIKE3CCA-SEED/PQCkemKAT_BIKE3-Level3_20318.rsp

� req �le: KAT/INDCPA/BIKE3CCA-SEED/PQCkemKAT_BIKE3-Level5_33686.req

� rsp �le: KAT/INDCCA/BIKE3CCA-SEED/PQCkemKAT_BIKE3-Level5_33686.rsp

5 Known Attacks (2.B.5)

This section discusses the practical security aspects of our proposal.

5.1 Hard Problems and Security Reduction

In the generic (i.e. non quasi-cyclic) case, the two following problems were proven
NP-complete in [6].

Problem 1 (Syndrome Decoding � SD).

Instance: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , an integer t > 0.

Property: There exists e ∈ Fn2 such that |e| ≤ t and eHT = s.
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Problem 2 (Codeword Finding � CF).

Instance: H ∈ F(n−k)×n
2 , an integer t > 0.

Property: There exists c ∈ Fn2 such that |c| = t and cHT = 0.

In both problems the matrix H is the parity check matrix of a binary linear
[n, k] code. Problem 1 corresponds to the decoding of an error of weight t and
Problem 2 to the existence of a codeword of weight t. Both are also conjectured to
be hard on average. This is argued in [1], together with results which indicate that
the above problems remain hard even when the weight is very small, i.e. t = nε,
for any ε > 0. Note that all known solvers for one of the two problems also solve
the other and have a cost exponential in t.

5.1.1 Hardness for QC codes.

Coding problems (SD and CF) in a QC-code are NP-complete, but the result does
not hold for when the index is �xed. In particular, for (2, 1)-QC codes or (3, 1)-QC
codes, which are of interest to us, we do not know whether or not SD and CF are
NP-complete.

Nevertheless, they are believed to be hard on average (when r grows) and the
best solvers in the quasi-cyclic case have the same cost as in the generic case up
to a small factor which never exceeds the order r of quasi-cyclicity. The problems
below are written in the QC setting, moreover we assume that the parity check
matrix H is in systematic form, that is the �rst (n0 − k0) × (n0 − k0) block of H
is the identity matrix. For instance, for (2, 1)-QC and (3, 1)-QC codes codes, the
parity check matrix (over R) respectively have the form

(
1 h

)
with h ∈ R, and

 1 0 h0

0 1 h1

 with h0, h1 ∈ R.

In our case, we are interested only by those two types of QC codes and to the three
related hard problems below:

Problem 3 ((2, 1)-QC Syndrome Decoding � (2, 1)-QCSD).
Instance: s, h in R, an integer t > 0.
Property: There exists e0, e1 in R such that |e0|+ |e1| ≤ t and e0 + e1h = s.

Problem 4 ((2, 1)-QC Codeword Finding � (2, 1)-QCCF).
Instance: h in R, an integer t > 0.
Property: There exists c0, c1 in R such that |c0|+ |c1| = t and c0 + c1h = 0.
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Problem 5 ((3, 1)-QC Syndrome Decoding � (3, 1)-QCSD).
Instance: s0, s1, h0, h1 in R, an integer t > 0.
Property: There exists e0, e1, e2 in R such that |e0|+|e1|+|e2| ≤ 3t/2, e0+e2h0 = s0
and e1 + e2h1 = s1.

In the decisional variant of the (2,1)-QCSD problem, an adversary has to decide
for appropriately sampled (s, h) whether there exists an error that matches the
expected property. Due to the restriction on the weight of the sampling, this leads
to sampling h uniformly with an odd weight, and s with an even weight. For
the (3,1)-QCSD, we focus on the sampling of s0, s1, h0, h1, where h0, h1 are even,
s0 is random with the same parity of t/2, and s1 is random and even. As they
are presented, those problems have the appearance of sparse polynomials problem,
but in fact they are equivalent to the generic quasi-cyclic decoding and codeword
�nding problems.

In the current state of the art, the best known techniques for solving those
problems are variants of Prange's Information Set Decoding (ISD) [35]. We remark
that, though the best attacks consist in solving one of the search problems, the
security reduction of our scheme requires the decision version of Problem 2.

5.2 Information Set Decoding

The best asymptotic variant of ISD is due to May and Ozerov [31], but it has a
polynomial overhead which is di�cult to estimate precisely. In practice, the BJMM
variant [5] is probably the best for relevant cryptographic parameters. The work
factor for classical (i.e. non quantum) computing of any variant A of ISD for
decoding t errors (or �nding a word of weight t) in a binary code of length n and
dimension k can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error rate
t/N . It has been proven in [38] that, asymptotically, for sublinear weight t = o(n)
(which is the case here as w ≈ t ≈

√
n), we have c = log2

1
1−R for all variants of

ISD.

In practice, when t is small, using 2ct with c = log2
1

1−R gives a remarkably
good estimate for the complexity. For instance, non asymptotic estimates derived
from [20] gives WFBJMM(65542, 32771, 264) = 2263.3 �column operations� which is
rather close to 2264. This closeness is expected asymptotically, but is circumstantial
for �xed parameters. It only holds because various factors compensate, but it holds
for most MDPC parameters of interest.
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5.2.1 Exploiting the Quasi-Cyclic Structure.

Both codeword �nding and decoding are a bit easier (by a polynomial factor) when
the target code is quasi-cyclic. If there is a word of weight w in a QC code then
its r quasi-cyclic shifts are in the code. In practice, this gives a factor r speedup
compared to a random code. Similarly, using Decoding One Out of Many (DOOM)
[36] it is possible to produce r equivalent instances of the decoding problem. Solving
those r instances together saves a factor

√
r in the workload.

5.2.2 Exploiting Quantum Computations.

Recall �rst that the NIST proposes to evaluate the quantum security as follows:

1. A quantum computer can only perform quantum computations of limited
depth. They introduce a parameter, MAXDEPTH, which can range from 240

to 296. This accounts for the practical di�culty of building a full quantum
computer.

2. The amount (or bits) of security is not measured in terms of absolute time
but in the time required to perform a speci�c task.

Regarding the second point, the NIST presents 6 security categories which
correspond to performing a speci�c task. For example Task 1, related to Category
1, consists of �nding the 128 bit key of a block cipher that uses AES-128. The
security is then (informally) de�ned as follows:

De�nition 5. A cryptographic scheme is secure with respect to Category k i�. any
attack on the scheme requires computational resources comparable to or greater than
those needed to solve Task k.

In what follows we will estimate that our scheme reaches a certain security
level according to the NIST metric and show that the attack takes more quan-
tum resources than a quantum attack on AES. We will use for this the following
proposition.

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover's algorithm for �nding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover's attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.
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This proposition is proved in Section B of the appendix. The point is that
(essentially) the best quantum attack on our scheme consists in using Grover's
search on the information sets computed in Prange's algorithm (this is Bernstein's
algorithm [7]). Theoretically there is a slightly better algorithm consisting in quan-
tizing more sophisticated ISD algorithms [24], however the improvement is tiny and
the overhead in terms of circuit complexity make Grover's algorithm used on top
of the Prange algorithm preferable in our case.

5.3 Defeating the GJS Reaction Attack

BIKE IND-CPA variants use ephemeral KEM key pairs, i.e. a KEM key genera-
tion is performed for each key exchange. As a result, the GJS reaction attack is
inherently defeated: a GJS adversary would have (at most) a single opportunity
to observe decryption, thus not being able to create statistics about di�erent error
patterns. BIKE IND-CCA variants, instead, defeat the attack by achieving a neg-
ligible DFR thanks to the Back�ip decoder. We note that, for e�ciency purposes,
an initiator may want to precompute KEM key pairs before engaging in key ex-
change sessions. We remark that policies to securely store the pregenerated KEM
key pair must be in place, in order to avoid that an adversary access a KEM key
pair that is going to be used in a future communication.

5.4 Choice of Parameters

We denote WF(n, k, t) the workfactor of the best ISD variant for decoding t errors
in a binary code of length n and dimension k. In the following we will consider
only codes of transmission rate 0.5, that is length n = 2r and dimension r. In a
classical setting, the best solver for Problem 3 has a cost WF(2r, r, t)/

√
r, the best

solver for Problem 4 has a cost WF(2r, r, w)/r, and the best solver for Problem 5

has a cost WF(3r, r, 3t/2)/
√
r. As remarked above, with WF(n, k, `) ≈ 2` log2

n
n−k

we obtain a crude but surprisingly accurate, parameter selection rule. We target
security levels corresponding to AES λ with λ ∈ {128, 192, 256}. To reach λ bits
of classical security, we choose w, t and r such that

� for BIKE-1 and BIKE-2, Problem 3 with block size r and weight t and
Problem 4 with block size r and weight w must be hard enough, that is

λ ≈ t− 1

2
log2 r ≈ w − log2 r. (4)

� for BIKE-3, Problem 5 with block size r and weight 3t/2 and Problem 3 with
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block size r and weight w must be hard enough, that is

λ ≈ 3t

2
log2

3

2
− 1

2
log2 r ≈ w −

1

2
log2 r. (5)

Those equation have to be solved in addition with the constraint that r must be
large enough to decode t errors in (2, 1, r, w)-QC-MDPC code with a negligible
failure rate. Finally, we choose r such that 2 is primitive modulo r. First, this will
force r to be prime, thwarting the so-called squaring attack [27]. Also, it implies
that (Xr − 1) only has two irreducible factors (one of them being X − 1). This is
an insurance against an adversary trying to exploit the structure of F2[X]/〈Xr−1〉
when (Xr−1) has small factors, other than (X−1). This produces the parameters
proposed in the document.

The quantum speedup is at best quadratic for the best solvers of the problems
on which our system, from the arguments of �5.2.2, it follows our set of parameters
correspond the security levels 1, 3, and 5 described in the NIST call for quantum
safe primitives.

6 Formal Security (2.B.4)

6.1 IND-CPA Security

In this section we show that BIKE-1/2/3 variants are IND-CPA secure.
We start with the following de�nition where we denote by K the domain of the

exchanged symmetric keys and by λ the security level.

De�nition 6. A key-encapsulation mechanism is IND-CPA (passively) secure if,
for any polynomial-time adversary A, the advantage of A in the following game is
negligible.

Game IND-CPA

1: (sk, pk)← Gen(λ)

2: (c,K0)← Encaps(pk)

3: K1
$←− K

4: c∗ ← c

5: K∗ ← Kb

6: b′ ← A(pk, c∗,K∗)
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We de�ne the adversary's advantage as AdvIND-CPA(A) = Pr[b′ = b]− 1/2.

Theorem 2.

1. BIKE-1,2 are IND-CPA secure in the Random Oracle Model under the (2, 1)-
QCCF and (2, 1)-QCSD assumptions.

2. BIKE-3 is IND-CPA secure in the Random Oracle Model under the (3, 1)-
QCSD and (2, 1)-QCSD assumptions.

Preliminary Remarks on Parity and Balancedness: In the proof of Theorem 2,
we will use decisional versions of the (2, 1)-QCSD, (2, 1)-QCCF, and (3, 1)-QCSD
problems, instead of their search versions given in Problem 3, 4, 5 respectively.
We argue that the search and decisional versions of these problems have similar
hardness.

The message security for BIKE-1 and BIKE-2 rely on the decisional version of
Problem 3 as de�ned next:

Problem 3a (Decisional parity-(2, 1)-QCSD).
Instance: Given c, h in R, an integer t > 0, |h| odd and |c|+ t even.
Property: Decides if there exist e0, e1 in R such that |e0|+|e1| = t and e0+e1h = c.

There are two di�erences between the search problem given in Problem 3 and its
decisional version given in Problem 3a. One is a parity condition on the instance,
and the other is the equality for the error weight restriction instead of inequality.
Using the inequality is a common practice in coding theory and corresponds to a
situation where one wishes to decode up to a bound. In fact, this problem was
written in this way in the Berlekamp, McEliece and Von-Tilborg's seminal paper
[6]. The two problems (di�ering on whether the equality or inequality is used) are
closely related and are essentially of same di�culty. Note that in the same seminal
paper, the codeword �nding problem is described with an equality.

The other di�erence concerns the parity property. The parity of a sum (re-
spectively product) is equal to the sum (respectively product) of the parities � this
comes directly from the quasi-cyclicity and the underlying polynomial ring struc-
ture. The weight of h is odd because, by construction, public keys have an odd
weight. Consequently, s and (e1, e2) must have the same parity else the property is
trivially false. Another variant of Problem 3 is needed for the key indistinguisha-
bility of BIKE-3 (note that w is even and w/2 is odd).

Problem 3b (Decisional balanced-(2, 1)-QCSD). (w even, w/2 odd)
Instance: Given f0, f1 in R, an integer w > 0, |f1| odd and |f0| even.
Property: Decides whether there exist h0, h1 in R such that |h0| = |h1| = w/2 and
h1 + h0f1 = f0.
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Here, in addition, there is a balancedness constraint: both halves of the solution
(h0, h1) must have the same weight. In practice, a proportion Θ(1/

√
w) of pairs

(h0, h1) of total weight w are balanced and the problem cannot become signi�cantly
easier on average in the balanced case.

Similarly the key indistinguishability for BIKE-1 and BIKE-2 requires a bal-
anced variant of Problem 4.

Problem 4a (Decisional balanced-(2, 1)-QCCF). (w even, w/2 odd)
Instance: Given h in R, |h| odd, an integer w > 0.
Property: Decides if there exist h0, h1 in R such that |h0| = |h1| = w/2 and
h0 + h1h = 0.

Finally, for the message security of BIKE-3 we need a decisional balanced vari-
ant of Problem 5

Problem 5a (Decisional balanced-(3, 1)-QCSD). (t even)
Instance: Given s0, s1, f0, f1 in R, an integer t > 0, |f1| odd, |f0| , |s1| , |s0| + t/2
even.
Property: Decide if there exist e, e0, e1 in R such that |e| = t/2, |e0| + |e1| = t,
e+ e1f0 = s0 and e0 + e1f1 = s1.

Again here, the probability for a triple (e, e0, e1) to be balanced with |e| = t/2
and |e0|+ |e1| = t is Θ(1/

√
t).

To conclude our remarks, we reiterate that none of the variations described
above have a signi�cant impact on the hardness of the problems. The parity issue
is purely technical. In fact, for given system parameters, the parity of many objects
appearing in the protocol is imposed. We need to impose the same parity in the
sequence of games or we could obtain a trivial (but meaningless) distinguisher. On
the other hand, the matter of balancedness could in principle a�ect the hardness of
the problem, but in practice the impact is very limited. This is because balanced
words appear with polynomial probability, and thus the balanced problems cannot
be fundamentally easier than generic ones. In light of these considerations, we can
simply refer to the generic problems, both in the statement of Theorem 2 and in
its proof.

Remark 2. In the context of the general syndrome decoding problem, there is a
search to decision reduction. For the quasi-cyclic case, no such reduction is known,
however the best known attacks for the decisional case correspond to the search
case.
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Proof of Theorem 2. To begin, note that we model the hash function K as a ran-
dom oracle. We will use a sequence of games with the goal of showing that an
adversary distinguishing one game from another can be exploited to break one or
more of the problems cited above in polynomial time (see Section 5.1 for de�ni-
tions).

First let us instantiate the IND-CPA game for all three BIKE variants. For all
variants, the game will use the following randomness

m
$←− R

g
$←− R |g| odd (i.e. g invertible)

(h0, h1)
$←− R2 |h0| = |h1| = w/2 odd

(e0, e1)
$←− R2 |e0|+ |e1| = t

e
$←− R |e| = t/2

The output (sk, pk) of Gen(λ) will be sk = (h0, h1) for all variants and
pk = (f0, f1) = (gh1, gh0) for BIKE-1,

pk = h = h1h
−1
0 for BIKE-2,

pk = (f0, f1) = (h1 + gh0, g) for BIKE-3.

For both valid and random pk, the output (c,K) of Encaps(pk) will be K = K(e0, e1) ∈ K = {0, 1}`K for BIKE-1 and BIKE-2,

K = K(e0, e1, e) ∈ K = {0, 1}`K for BIKE-3.

and
c = (mf0 + e0,mf1 + e1) with pk = (f0, f1), |f0| and |f1| odd, for BIKE-1,

c = e0 + e1h with pk = h, |h| odd, for BIKE-2,

c = (e+ e1f0, e0 + e1f1) with pk = (f0, f1), |f0| even, |f1| odd, for BIKE-3.

Let A be a probabilistic polynomial-time adversary playing the IND-CPA game
against our scheme, and consider the following games.

Game G1: This corresponds to an honest run of the protocol, and is the same as
the original IND-CPA game. In particular, the simulator has access to all
keys and randomness.
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Game G2: In this game, the goal is to forget the secret key, and to generate a
random public key. It is the same as the previous game where step 1: is
replaced by

1 : pk = (f0, f1)
$←− R2, |f0| , |f1| odd, for BIKE-1

1 : pk = h
$←− R, |h| odd, for BIKE-2

1 : pk = (f0, f1)
$←− R2, |f0| even, |f1| odd, for BIKE-3

An adversary distinguishing between these two games is therefore able to
distinguish between a well-formed public key and a randomly-generated one
(of suitable parity). To distinguish G1 from G2 the adversary must:

BIKE-1: Distinguish (gh1, gh0) from a random pair of invertible (i.e. odd weight)
elements of R. First, for any (h0, h1) ∈ R2 the distributions

� (gh1, gh0) with g
$←− R, |g| odd, and

� (g′h1h
−1
0 , g′) with g′

$←− R, |g′| odd
are identical. If the latter can be distinguished from random then h1h

−1
0

can be distinguished from random. Thus, for G1 BIKE-1, AdvG1(A) ≤
AdvG2(A) + Adv(2,1)−QCCF(A′).

BIKE-2: Distinguish h1h
−1
0 from a random invertible element of R. And so,

once again: AdvG1(A) ≤ AdvG2(A) + Adv(2,1)−QCCF(A′).

BIKE-3: Distinguish (h0 + h1g, g) from a random pair of elements of R
with (even,odd) weight. And so, AdvG1(A) ≤ AdvG2(A) +
Adv(2,1)−QCSD(A′).

Thus we have respectively:

AdvG1(A)−AdvG2(A) ≤ Adv(2,1)-QCCF(A′) for BIKE-1 and BIKE-2

and
AdvG1(A)−AdvG2(A) ≤ Adv(2,1)-QCSD(A′) for BIKE-3

where A′ is a polynomial-time adversary for the underlying problem.

Game G3: Now, the simulator also picks a random capsule. Thus the game is the
same as G2, but we replace step 4: by

4 : c∗ = (c∗0, c
∗
1)

$←− R2, |c∗0|+ |c∗1|+ t even, for BIKE-1

4 : c∗
$←− R, |c∗| odd, for BIKE-2

4 : c∗ = (c∗0, c
∗
1)

$←− R2, |c∗1|+ t, |c∗0|+ t/2 even, for BIKE-3
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An adversary distinguishing between these two games is therefore able to
distinguish between a well-formed capsule and a randomly-generated one (of
suitable parity). To distinguish G2 from G3 the adversary must:

BIKE-1: Given random (f0, f1) in R of odd weight, distinguish a noisy codeword
(c0, c1) = (mf0 + e0,mf1 + e1) from a random word (c∗0, c

∗
1) of identical

parity. When m is uniformly distributed this is not di�erent from
distinguishing the syndrome of (c0, c1) using the parity check

5 (fT1 , f
T
0 ),

that is e0f1+e1f0, from a random element of R of identical parity. This
won't be di�erent from distinguishing e0 + e1f0f1

−1 from a random
element of R of identical parity. Because f0 and f1 are random, we
then have: AdvG2(A) ≤ AdvG3(A) + Adv(2,1)−QCSD(A′′).

BIKE-2: Given h random in R of odd weight, distinguish e0+e1h from a random
element of R of identical parity. And so, once again, AdvG2(A) ≤
AdvG3(A) + Adv(2,1)−QCSD(A′′).

BIKE-3: Given random (f0, f1) in R of (even,odd) weight, distinguish (c0, c1) =
(e+ e1f0, e0 + e1f1) from a random pair (c∗0, c

∗
1) of elements of R. Here

c∗1 must have the parity of (e0, e1) and c∗0 must have the parity of e.
This corresponds to the decisional balanced (3, 1)-QCSD challenge, and
so AdvG2(A) ≤ AdvG3(A) + Adv(3,1)−QCSD(A′′).

If an adversary is able to distinguish game G2 from game G3, then it can
solve one of the QCSD problems. Hence, we have either:

AdvG2(A)−AdvG3(A) ≤ Adv(2,1)-QCSD(A′′) for BIKE-1 and BIKE-2

and AdvG2(A) − AdvG3(A) ≤ Adv(3,1)-QCSD(A′′) for BIKE-3 where A′′ is
a polynomial-time adversary for the underlying problem.

Note that at this point, the adversary receives only random values for public
key and capsule, and is called to distinguish between K0 and K1. Now, the latter
is generated uniformly at random, while the former is pseudorandom (since K is
modeled as a random oracle 6, and therefore the adversary only has negligible
advantage, say ε. So in the end, we have:

AdvIND-CPA(A) ≤ Adv(2,1)-QCCF(A′) + Adv(2,1)-QCSD(A′′) + ε. (6)

5Indeed (f0, f1) · (fT1 , fT0 )T = f0f1 + f1f0 = 0
6To nitpick, one could simply pick K as any Key Derivation Function, however for

e�ciency purposes it is simpler to consider it as a Random Oracle.
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for BIKE-1 and BIKE-2 or

AdvIND-CPA(A) ≤ Adv(2,1)-QCSD(A′) + Adv(3,1)-QCSD(A′′) + ε. (7)

for BIKE-3.

6.2 IND-CCA Security

As we mentioned in Section 2.2, the IND-CCA secure versions of BIKE are obtained
via speci�c conversions which transform the underlying encryption schemes into an
IND-CCA secure KEM. Note that the resulting KEM will have the exact same DFR
as the underlying cryptosystem: we will denote this by ρ.

6.2.1 Security of BIKE-1-CCA

The underlying cryptosystem is McEliece. To obtain an IND-CCA secure KEM,
we apply the transformation called FO

6⊥ from [21] directly to it. This can be
decomposed in two parts: the �rst part T makes the cryptosystem deterministic
by computing the randomness as the hash of the plaintext, while the second part U 6⊥

converts such a deterministic cryptosystem into a KEM, using re-encryption and
implicit rejection to guarantee IND-CCA security. We have the following result,
where we treat the hash functions H and K as random oracles.

Theorem 3. Let A be an IND-CCA adversary for BIKE-1-CCA in the ROM,
running in time θ and issuing at most qD decapsulation queries and qH+qK random
oracle queries (respectively to the random oracles H and K). Then there exists a
OW-CPA adversary A′ for QC-MDPC McEliece, running in approximately the
same time, such that

AdvIND−CCAKEM (A) ≤ qH · ρ+
qK
2r

+ (qH + 1) ·AdvOW−CPAPKE (A′).

A proof of Theorem 3 can be easily obtained by combining those of Theorems
3.1 and 3.4 of [21]. The term 2r corresponds to the size of the plaintext space, i.e.
the set of codewords, from which the error vector (e0, e1) is extracted.

In the QROM, we have the following result from [22].

Theorem 4. Let A be an IND-CCA adversary for BIKE-1-CCA in the QROM,
running in time θ and issuing at most qD decapsulation queries and qH+qK random
oracle queries (respectively to the random oracles H and K). Then there exists a
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OW-CPA adversary A′ for QC-MDPC McEliece, running in approximately the
same time, such that

AdvIND−CCAKEM (A) ≤ 4qH ·
√
ρ+

2qK√
2r

+ 2(qH + qK) ·
√

AdvOW−CPAPKE (A′).

Theorem 4 was proved in [22, Theorem 1], where again we have 2r for the
size of the plaintext space. Note that this reduction is looser than the previous
one, partly due to the probabilistic nature of McEliece, and partly because of the
inherent di�culties connected to proofs in the QROM.

6.2.2 Security of BIKE-2-CCA

To obtain an IND-CCA secure KEM, we are going to follow the transform explained
earlier in Section 2.2. First, we use our IND-CPA KEM to build an IND-CPA
encryption of the randomness seed: let us call the resulting PKE E . We then
proceed as in [21].

Theorem 5. Let A be an IND-CCA adversary for BIKE-2-CCA in the ROM,
running in time θ and issuing at most qD decapsulation queries and qH+qK random
oracle queries (respectively to the random oracles H and K). Then there exists an
IND-CPA adversary A′ for E, running in approximately the same time, such that

AdvIND−CCAKEM (A) ≤ qH · ρ+
qK
2`K

+ 3 ·AdvIND−CPAPKE (A′).

To prove Theorem 5, one can combine Theorems 3.2 and 3.4 of [21]. The term
2`K corresponds to the size of the plaintext space, i.e. the set of seeds z, from
which the error vector (e0, e1) is extracted. It should be noted that this reduction
is tight in the ROM.

Theorem 6. Let A be an IND-CCA adversary for BIKE-2-CCA in the QROM,
running in time θ and issuing at most qD decapsulation queries and qH+qK random
oracle queries (respectively to the random oracles H and K). Then there exists an
IND-CPA adversary A′ for E, running in approximately the same time, such that

AdvIND−CCAKEM (A) ≤ 4qH ·
√
ρ+2

√
(qH + qK + 1)AdvIND−CPAPKE (A′) + 2

(qH + qK + 1)2

2`K
.

Improved bounds for the constructions of [21] were given in [23]. In particular,
the proof of Theorem 6 follows from Theorem 1 of [23]. It should be noted that,
as explained in the paper, starting from IND-CPA as opposed to OW-CPA allows
for a tighter transformation in the QROM. Namely, we have a square root over
(qH + qK + 1).
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6.2.3 Security of BIKE-3-CCA

The process here is the same as for BIKE-2-CCA. By analogy, we denote with E ′
the underlying cryptosystem.

Theorem 7. Let A be an IND-CCA adversary for BIKE-3-CCA in the ROM,
running in time θ and issuing at most qD decapsulation queries and qH+qK random
oracle queries (respectively to the random oracles H and K). Then there exists a
IND-CPA adversary A′ for E ′, running in approximately the same time, such that

AdvIND−CCAKEM (A) ≤ qH · ρ+
qK
2`K

+ 3 ·AdvIND−CPAPKE (A′).

To prove Theorem 7, one can combine Theorems 3.2 and 3.4 of [21]. We
have again the term 2`K corresponding to the size of the plaintext space, and this
reduction is also tight in the ROM.

Theorem 8. Let A be an IND-CCA adversary for BIKE-3-CCA in the QROM,
running in time θ and issuing at most qD decapsulation queries and qH+qK random
oracle queries (respectively to the random oracles H and K). Then there exists an
IND-CPA adversary A′ for E ′, running in approximately the same time, such that

AdvIND−CCAKEM (A) ≤ 4qH ·
√
ρ+2

√
(qH + qK + 1)AdvIND−CPAPKE (A′) + 2

(qH + qK + 1)2

2`K
.

As before, we take our bounds from [23]. In particular, the proof of Theorem 8
follows from Theorem 1 of [23]. Once again, the transformation bene�ts from being
base on an IND-CPA PKE, as opposed to OW-CPA.

6.3 Public Keys and Subcodes

In this section, we prove that one can e�ciently sample an invertible element from
F2[X]/〈Xr−1〉 by taking any polynomial h

$←F2[X]/〈Xr−1〉 such that |h| is odd.
If this element was not invertible, the public code produced in BIKE-1 and BIKE-3
would be a subcode of the private one.

Lemma 1. Let h ∈ F2[X] have even weight. Then h is not invertible modulo
Xr − 1.

Proof. We show that (X−1) | h by induction on |h|. For |h| = 0 trivially (X−1) | h.
Assume that (X − 1) | h whenever |h| = 2k for some k > 0. Now consider any
h ∈ F2[X] with weight |h| = 2(k + 1), and take two distinct terms Xi, Xj of h
such that i < j. De�ne h′ = h−Xi −Xj , so that |h′| = 2k. Then (X − 1) | h′ by
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induction, i.e. h′ = (X − 1)h′′ for some h′′ ∈ F2[X]. Hence h = h′ + Xi + Xj =
(X − 1)h′′ + Xi(Xj−i + 1) = (X − 1)h′′ + Xi(X − 1)(Xj−i−1 + · · · + 1) = (X −
1)(h′′ +Xi(Xj−i−1 + · · ·+ 1)), and therefore (X − 1) | h.

Theorem 9. Let r a prime such that (Xr−1)/(X−1) ∈ F2[X] is irreducible. Then
any h ∈ F2[X] with deg(h) < r is invertible modulo Xr − 1 i� h 6= Xr−1 + · · ·+ 1
and |h| is odd.

Proof. Take a term Xi of h. Then
∣∣h+Xi

∣∣ = |h| − 1 is even, and by Lemma 1
(X − 1) | (h+Xi). Hence h mod (X − 1) = Xi mod (X − 1) = 1, meaning that h
is invertible modulo X − 1.

Now, since (Xr − 1)/(X − 1) = Xr−1 + · · ·+ 1 is irreducible, if deg(h) < r− 1
then gcd(h,Xr−1+ · · ·+1) = 1, and if deg(h) = r−1, then gcd(h,Xr−1+ · · ·+1) =
gcd(h+Xr−1 + · · ·+ 1, Xr−1 + · · ·+ 1) = 1, since deg(h+Xr−1 + · · ·+ 1) < r− 1.
Hence h is invertible modulo Xr−1 + · · ·+ 1.

Therefore, the combination of the inverses of h modulo X − 1 and modulo
Xr−1 + · · ·+ 1 via the Chinese remainder theorem is well de�ned, and by construc-
tion it is the inverse of h modulo (X − 1)(Xr−1 + · · ·+ 1) = Xr − 1.

Corollary 1. One can e�ciently sample an invertible element from F2[X]/〈Xr−1〉
by taking any polynomial h $←F2[X]/〈Xr − 1〉 such that |h| is odd.

7 Advantages and Limitations (2.B.6)

This document presents BIKE, a suite of key encapsulation mechanisms (KEM)
composed by three IND-CPA secure variants, called BIKE-1, BIKE-2 and BIKE-3,
and one IND-CCA variant, called BIKE-1-CCA. Each variant has its own pros and
cons, which we will illustrate below.

All BIKE variants are tied together by the fact that they are based on quasi-
cyclic moderate density parity-check (QC-MDPC codes), which can be e�ciently
decoded through bit �ipping decoding techniques. This kind of decoder is extremely
simple: it estimates what are the positions most likely in error, �ip them and
observes whether the result is better (smaller syndrome weight) than before or
not. This process converges very quickly; in particular, Section 2.4.2 presents a
1-iteration bit �ipping decoder.

The three IND-CPA secure BIKE variants presented in Round 1 were designed
to use ephemeral keys. The main reason for this choice, is that it inherently
defeats the GJS reaction attack mentioned in Section 5, which needs to observe a
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large number of decodings for the same private key (something impossible when
ephemeral keys are used). As a consequence, key generation must be e�cient, since
it is executed at every key encapsulation. Previous works based on QC-MDPC
codes compute a polynomial inversion operation in order to obtain a QC-MDPC
public key in systematic form. The polynomial inversion is an expensive operation.
BIKE-1 completely avoids the polynomial inversion by not relying on public keys
in systematic form. Instead, it hides the private sparse structure by multiplying it
by a dense polynomial of odd weight sampled uniformly at random. This leads to
an increased public key size but results in a very e�cient key generation process (it
becomes the fastest process among key generation, encapsulation and decapsulation
operations). BIKE-2 uses public keys in systematic form, but thanks to our batch
key generation technique discussed in Section 3.9, the amortized cost can decrease
up to 84%, becoming less expensive than the bit �ipping decoder. BIKE-3 also
avoids polynomial inversion by constructing the public key as an instance of the
syndrome decoding problem. This results in the fastest key generation among
the three variants. Additionally, half of the public key can be represented using
a seed, which yields reduced bandwidth for marginal computation overhead (see
Section 3.4. By construction, BIKE-3 has the advantage of relying on a single
security assumption, namely Quasi-Cyclic Syndrome Decoding (QCSD), as detailed
in Section 6.1. This makes the security reduction simpler. Besides the bit �ipping
algorithm and the eventual polynomial inversion (only necessary in BIKE-2), all
other operations in the BIKE suite consist of simple products of binary vectors,
an operation that can be easily optimized for all sorts of hardware and software
applications.

Regarding communication bandwidth corresponding to the sizes of the messages
exchanged by the parties, BIKE-1 public keys and cryptograms are n bits long.
BIKE-2 o�ers smaller public keys and ciphertexts, r bits only. BIKE-3 o�ers
somehow a compromise with r + |seed| bits for the public keys and n bits for the
ciphertexts. Two messages of same size (either n or r bits) are exchanged per key
encapsulation for BIKE-1 and 2. The situation is unbalanced for BIKE-3 (roughly
r for the initiator and n for the responder). In practice, these numbers range from
1.24 KB per message (BIKE-2 security level 1), up to 8.82 KB per message (BIKE-
3 security level 5), in the IND-CPA setting. These numbers seem fairly reasonable
when compared to the the average size of a website page (currently near 2MB [2]),
just as an example.

Regarding security, all BIKE variants rely on very well-known coding-theory
problems, i.e. the quasi-cyclic syndrome decoding and quasi-cyclic codeword �nd-
ing problems (with BIKE-3 relying only on the former as we just mentioned). The
best strategies to solve these problems are based on Information Set Decoding
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(ISD) techniques, a research �eld that has a very long history (Prange's seminal
work dates back 1962) and which has seem very little improvement along the years.
Moreover, we show that in the quantum setting, Grover's algorithm used on top of
the seminal Prange ISD algorithm is still the most preferable choice in our case.

One point worth noting is that the bit �ipping decoding techniques used in the
original BIKE proposal come with a relatively high decoding failure rate. While
this is not a problem in terms of reaction attacks (thanks to the ephemeral usage
of the key pairs), this would prevent the original BIKE variants from achieving
higher security notions such as IND-CCA. For Round 2 submission, we devised
an improved decoding technique, called the Back�ip decoder. It is presented in
Section 2.4.3 and it attains negligible decoding failure rates. These can be in fact
modulated to reach exactly the desired threshold (e.g. 2−128 for Security Level 1),
at the cost of a minor increase in block size.

Thanks to the improved decoder, it was possible to design an IND-CCA secure
version of BIKE. The three variants are named respectively BIKE-1-CCA, BIKE-
2-CCA and BIKE-3-CCA after their IND-CPA counterparts. Security for these
variants is obtained via a generic conversion from [21], which bene�ts from an
improved analysis appeared in [22, 23]. The BIKE-CCA variants presents a slightly
higher cost in term of performance than its IND-CPA counterpart, in exchange for
the higher security level and the ability to use static keys.

Finally, regarding intellectual property, to the best of our knowledge, BIKE-1,
BIKE-2, BIKE-1-CCA and BIKE-2-CCA are not covered by any patent. BIKE-3
and BIKE-3-CCA are covered by a patent whose owners are willing to grant a
non-exclusive license for the purpose of implementing the standard without com-
pensation and under reasonable terms and conditions that are demonstrably free of
any unfair discrimination, as denoted in the accompanying signed statements. We
emphasize that BIKE-1, BIKE-2, BIKE-1-CCA and BIKE-2-CCA are not covered
by the aforementioned patent, and that the BIKE team is willing to drop BIKE-3
and BIKE-3-CCA if this ever becomes a disadvantage when comparing our suite
with other proposals.

Overall, taking all these considerations into account, we believe that BIKE is
a well-rounded and promising candidate for post-quantum key exchange standard-
ization.
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A Proof of Theorem 1

Let us recall the theorem we want to prove.

Theorem 1. Under assumption 1, the probability Perr that the bit �ipping algo-
rithm fails to decode with �xed threshold τ = 1

2 is upper-bounded by

Perr ≤
1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t),

where ε
def
= e−

2wt
n .

We will denote in the whole section by h(x) the entropy (in nats) of a Bernoulli

random variable of parameter x, that is h(x)
def
= −x lnx− (1− x) ln(1− x).

A.1 Basic tools

A particular quantity will play a fundamental role here, the Kullback-Leibler di-
vergence (see for instance [13])

De�nition 7. Kullback-Leibler divergence
Consider two discrete probability distributions p and q de�ned over a same discrete
space X . The Kullback-Leibler divergence between p and q is de�ned by

D(p||q) =
∑
x∈X

p(x) ln
p(x)

q(x)
.

We overload this notation by de�ning for two Bernoulli distributions B(p) and B(q)
of respective parameters p and q

D(p||q) def
= D(B(p)||B(q)) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
.

We use the convention (based on continuity arguments) that 0 ln 0
p = 0 and p ln p

0 =
∞.

We will need the following approximations/results of the Kullback-Leibler di-
vergence

Lemma 2. For any δ ∈ (−1/2, 1/2) we have

D

(
1

2

∣∣∣∣∣∣∣∣12 + δ

)
= −1

2
ln(1− 4δ2). (8)
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For constant α ∈ (0, 1) and δ going to 0 by staying positive, we have

D(α||δ) = −h(α)− α ln δ +O(δ). (9)

For 0 < y < x and x going to 0 we have

D(x||y) = x ln
x

y
+ x− y +O

(
x2
)
. (10)

Proof. Let us �rst prove (8).

D

(
1

2

∣∣∣∣∣∣∣∣12 + δ

)
=

1

2
ln

1/2

1/2 + δ
+

1

2
ln

1/2

1/2− δ

P = −1

2
ln(1 + 2δ)− 1

2
ln(1− 2δ)

= −1

2
ln(1− 4δ2).

To prove (9) we observe that

D(α||δ) = α ln
(α
δ

)
+ (1− α) ln

(
1− α
1− δ

)
= −h(α)− α ln δ − (1− α) ln(1− δ)
= −h(α)− α ln δ +O(δ).

For the last estimate we proceed as follows

D(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

= x ln
x

y
− (1− x)

(
−x+ y +O

(
x2
))

= x ln
x

y
+ x− y +O

(
x2
)
.

The Kullback-Leibler appears in the computation of large deviation exponents.
In our case, we will use the following estimate which is well known and which can
be found for instance in [8]

Lemma 3. Let p be a real number in (0, 1) and X1, . . . Xn be n independent
Bernoulli random variables of parameter p. Then, as n tends to in�nity:

P(X1 + . . . Xn ≥ τn) =
(1− p)

√
τ

(τ − p)
√

2πn(1− τ)
e−nD(τ ||p)(1 + o(1)) for p < τ < 1,(11)

P(X1 + . . . Xn ≤ τn) =
p
√

1− τ
(p− τ)

√
2πnτ

e−nD(τ ||p)(1 + o(1)) for 0 < τ < p. (12)
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A.2 Estimation of the probability that a parity-check
equation of weight w gives an incorrect information

A.2.1 Main result

We start our computation by computing the probability that a parity-check equa-
tion gives an incorrect information about a bit. We say here that a parity-check
equation h (viewed as a binary word) gives an incorrect information about an error
bit ei that is involved in h if 〈h, e〉 6= ei, where e is the error. This is obtained
through the following lemma.

Lemma 4. Consider a word h ∈ Fn2 of weight w and an error e ∈ Fn2 of weight
t chosen uniformly at random. Assume that both w and t are of order

√
n: w =

Θ(
√
n) and t = Θ(

√
n). We have

Pe(〈h, e〉 = 1) =
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Remark 3. Note that this probability is in this case of the same order as the
probability taken over errors e whose coordinates are drawn independently from a
Bernoulli distribution of parameter t/n. In such a case, from the piling-up lemma
[29] we have

Pe(〈h, e〉 = 1) =
1−

(
1− 2t

n

)w
2

=
1

2
− 1

2
ew ln(1−2t/n)

=
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Let us bring now the following fundamental quantities for b ∈ {0, 1}

pb
def
= P(〈h, e〉 = 1|e1 = b) (13)

where without loss of generality we assume that h1 = 1 and e is an error of weight
t and length n chosen uniformly at random.

The proof of this lemma will be done in the following subsection. From this
lemma it follows directly that

Corollary 2. Assume that w = Θ(
√
n) and t = Θ(

√
n). Then

pb =
1

2
− (−1)bε

(
1

2
+O

(
1√
n

))
, (14)

where ε
def
= e−

2wt
n .
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A.2.2 Proof of Lemma 4

The proof involves properties of the Krawtchouk polynomials. We recall that the
(binary) Krawtchouk polynomial of degree i and order n (which is an integer),
Pni (X) is de�ned for i ∈ {0, · · · , n} by:

Pni (X)
def
=

(−1)i

2i

i∑
j=0

(−1)j
(
X

j

)(
n−X
i− j

)
where

(
X

j

)
def
=

1

j!
X(X−1) · · · (X−j+1).

(15)
Notice that it follows on the spot from the de�nition of a Krawtchouk polynomial
that

Pnk (0) =
(−1)k

(
n
k

)
2k

. (16)

Let us de�ne the bias δ by

δ
def
= 1− 2Pe(〈h, e〉 = 1).

In other words Pe(〈h, e〉 = 1) = 1
2(1 − δ). These Krawtchouk polynomials are

readily related to δ. We �rst observe that

Pe(〈h, e〉 = 1) =

∑w
j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

) .

Moreover by observing that
∑w

j=0

(
t
j

)(
n−t
w−j
)

=
(
n
w

)
we can recast the following

evaluation of a Krawtchouk polynomial as

(−2)w(
n
w

) Pnw(t) =

∑w
j=0(−1)j

(
t
j

)(
n−t
w−j
)(

n
w

)
=

∑w
j=0
j even

(
t
j

)(
n−t
w−j
)
−
∑w

j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

)
=

(
n
w

)
− 2

∑w
j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

)
= 1− 2Pe(〈h, e〉 = 1)

= δ. (17)

To simplify notation we will drop the superscript n in the Krawtchouk polynomial
notation. It will be chosen as the length of the MDPC code when will use it in our
case. An important lemma that we will need is the following one.
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Lemma 5. For all x in {1, . . . , t}, we have

Pw(x)

Pw(x− 1)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

Proof. This follows essentially from arguments taken in the proof of [28][Lemma
36, �7, Ch. 17]. The result we use appears however more explicitly in
[25][Sec. IV] where it is proved that if x is in an interval of the form[
0, (1− α)

(
n/2−

√
w(n− w)

)]
for some constant α ∈ [0, 1) independent of x,

n and w, then

Pw(x+ 1)

Pw(x)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

For our choice of t this condition is met for x and the lemma follows immediately.

We are ready now to prove Lemma 4.

Proof of Lemma 4. We start the proof by using (17) which says that

δ =
(−2)w(

n
w

) Pnw(t).
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We then observe that

(−2)w(
n
w

) Pnw(t) =
(−2)w(

n
w

) Pnw(t)

Pnw(t− 1)

Pnw(t− 1)

Pnw(t− 2)
. . .

Pnw(1)

Pnw(0)
Pnw(0)

=
(−2)w(

n
w

) ((
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)

)t
Pnw(0) (by Lemma 5)

=

(
1 +O

(
1

n

))t(n− 2w +
√

(n− 2w)2 − 4w(n− w)

2(n− w)

)t
(by (16))

= e
t ln

(
1−2ω+

√
(1−2ω)2−4ω(1−ω)
2(1−ω)

)(
1 +O

(
t

n

))
where ω

def
=
w

n

= e
t ln

(
1−2ω+1−4ω+O(ω2)

2(1−ω)

)(
1 +O

(
t

n

))

= e
t ln

(
1−3ω+O(ω2)

1−ω

)(
1 +O

(
t

n

))
= e

−2tω+O
(
tw2

n2

)(
1 +O

(
t

n

))
= e−

2wt
n

(
1 +O

(
1√
n

))
,

where we used at the last equation that t = θ(
√
n) and w = θ(

√
n).

A.3 Estimation of the probability that a bit is incor-
rectly estimated by the �rst step of the bit �ipping
algorithm

We are here in the model where every bit is involved in w/2 parity-check equations
and each parity-check equation is of weight w. We assume that the bit-�ipping
algorithm consists in computing for each bit i the syndrome bits corresponding
to the parity-checks involving i and taking the majority vote of these syndrome
bits. We model each vote of a parity-check by a Bernoulli variable equal to 1 if the
information coming from this random variable says that the bit should be �ipped.
The parameter of this Bernoulli random variable depends on whether or not i is
incorrect. When i is correct, then the Bernoulli random variable is of parameter
p0. When i is incorrect, then the Bernoulli random variable is of parameter p1. We
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bring in the quantities

q0
def
= P(�ip the bit|bit was correct) (18)

q1
def
= P(stay with the same value|bit was incorrect) (19)

Lemma 6. For b ∈ {0, 1}, we have

qb = O

(
(1− ε2)w/4√

πwε

)
.

Proof. For b ∈ {0, 1}, we let Xb
1, X

b
2, . . . , X

b
w/2 be independent random variables

of parameter pb. We obviously have

q0 ≤ P(

w/2∑
i=1

X0
i ≥ w/4)

q1 ≤ P(

w/2∑
i=1

X1
i ≤ w/4).

By using Lemma 3 we obtain for q0

q0 ≤
(1− p0)

√
1
2

(12 − p0)
√

2πw2 (1− 1
2)
e−w/2D( 1

2 ||p0)

≤ (1− p0)√
πwε

e−w/2D( 1
2 || 12− 1

2
ε(1+O(1/w))) (20)

≤ (1− p0)√
πwε

e
w(ln(1−ε2)+O( 1

w ))
4 (21)

≤ O

(
(1− ε2)w/4√

πwε

)
(22)

Whereas for q1 we also obtain

q1 ≤
p1

√
1
2

(p1 − 1
2)
√

2πw2
1
2

e−w/2D( 1
2 ||p1) (23)

≤ O

(
(1− ε2)w/4√

πwε

)
(24)
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A.4 Proof of Theorem 1

We are ready now to prove Theorem 1. We use here the notation of Assumption
1. Recall that e0 denotes the true error vector. e1 is the value of vector e after one
round of iterative decoding in Algorithm 1. We let ∆e

def
= e0+e1. CallX0

1 , . . . , X
0
n−t

the values after one round of iterative decoding of the n−t bits which were without
error initially (that is the bits i such that e0i = 0) . Similarly let X1

1 , . . . , X
1
t be

the values after one round of iterative decoding of the t bits which were initially in
error (i.e. for which e0i = 1). We let

S0
def
= X0

1 + · · ·+X0
n−t

S1
def
= X1

1 + · · ·+X1
t

S0 is the number of errors that were introduced after one round of iterative decoding
coming from �ipping the n− t bits that were initially correct, that is the number
of i's for which e0i = 0 and e1i = 1. Similarly S1 is the number of errors that are
left after one round of iterative decoding coming from not �ipping the t bits that
were initially incorrect, that is the number of i's for which e0i = 1 and e1i = 0.

Let S be the weight of ∆e. By assumption 1 we have

Perr ≤ P(|∆e| ≥ αt) = P(S ≥ αt),

for some α in (0, 1). We have

P(S ≥ αt) ≤ P(S0 ≥ αt/2 ∪ S1 ≥ αt/2)

≤ P(S0 ≥ αt/2) + P(S1 ≥ αt/2)

By Assumption 1, S0 is the sum of n − t Bernoulli variables of parameter q0. By
applying Lemma 3 we obtain

P(S0 ≥ αt/2) ≤
(1− q0)

√
αt

2(n−t)

( αt
2(n−t) − q0)

√
2π(n− t)(1− αt

2(n−t))
e
−(n−t)D

(
αt

2(n−t)

∣∣∣∣∣∣q0)

≤ 1√
απt

e
−(n−t)D

(
αt

2(n−t)

∣∣∣∣∣∣q0) (25)

We observe now that

D

(
αt

2(n− t)

∣∣∣∣∣∣∣∣q0) ≥ D
(

αt

2(n− t)

∣∣∣∣∣
∣∣∣∣∣O
(

(1− ε2)w/4√
πwε

))
(26)
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where we used the upper-bound on q0 coming from Lemma 6 and the fact that
D(x||y) ≥ D(x||y′) for 0 < y < y′ < x < 1. By using this and Lemma 2, we deduce

D

(
αt

2(n− t)

∣∣∣∣∣∣∣∣q0) ≥ αt

2(n− t)
ln

(
αt

2(n− t)

)
− αt

2(n− t)
ln

(
O

(
(1− ε2)w/4

ε
√
w

))
+O

(
αt

2(n− t)

)
≥ αt

2(n− t)
ln

(
t
√
w

n

)
− αtw

8(n− t)
ln
(
1− ε2

)
+O

(
t

n

)
≥ − αt

8(n− t)
lnn− αtw

8(n− t)
ln
(
1− ε2

)
+O

(
t

n

)
.

By plugging in this expression in (25) we obtain

P(S0 ≥ αt/2) ≤ 1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t)

On the other hand we have

P(S1 ≥ αt/2) ≤
(1− q1)

√
α
2

(α2 − q1)
√

2πt(1− α
2 )
e−tD(α2 ||q1)

≤ 1√
απt

e−tD(α2 ||q1) (27)

Similarly to what we did above, by using the upper-bound on q1 of Lemma 6 and
D(x||y) ≥ D(x||y′) for 0 < y < y′ < x < 1, we deduce that

D
(α

2

∣∣∣∣∣∣q1) ≥ D(α
2

∣∣∣∣∣
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(

(1− ε2)w/4

ε
√
w

))

By using together with Lemma 2 we obtain

D
(α

2

∣∣∣∣∣∣q1) ≥ −h(α/2)− α

2
ln

(
O

(
(1− ε2)w/4

ε
√
w

))
+O

(
(1− 4ε2)w/4

ε
√
w

)
≥ −αw

8
ln
(
1− ε2

)
+
α

8
lnn+O (1) .

By using this lower-bound in (27), we deduce

P(S1 ≥ αt/2) ≤ 1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t).
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B Proof of Proposition 1

Let us recall �rst the proposition

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover's algorithm for �nding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover's attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

Proof. Following Zalka[40], the best way is to perform Grover's algorithm sequen-
tially with the maximum allowed number of iterations in order not to go beyond
MAXDEPTH. Grover's algorithm consists of iterations of the following procedure:

� Apply U : |0〉|0〉 →
∑

x∈{0,1}n
1

2n/2
|x〉|f(x)〉.

� Apply a phase �ip on the second register to get∑
x∈{0,1}n

1
2n/2

(−1)f(x)|x〉|f(x)〉.

� Apply U †.

If we perform I iterations of the above for I ≤ 1√
α
then the winning probability is

upper bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially

before measuring, and each iteration costs time Cf . At each iteration, we succeed
with probability αI2 and we need to repeat this procedure 1

αI2
times to get a result

with constant probability. From there, we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (28)

A similar reasoning performed on using Grover's search on AES-N leads to a quan-
tum complexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (29)

The proposition follows by comparing (28) with (29).
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