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1 Introduction
This document describes the Key Encapsulation Mechanism (KEM) based on
Quasi-Cyclic Moderate Density Parity-Check (QC-MDPC) codes, that can be de-
coded using bit flipping decoding techniques, called BIKE.

This version presents an updated and simplified reference document. It is
aimed at Round 3 of the Post-Quantum Cryptography Standardization project
that is managed by the National Institute of Standards and Technology (NIST).
Previous versions of this document are therefore to be regarded as a historical and
technical repository. They remain available for the interested reader at the website:
https://bikesuite.org.

1.1 Notation
Table 1 presents some notation used throughout the document.

Notation Description

F2: Finite field of 2 elements.

R: Cyclic polynomial ring F2[X]/〈Xr − 1〉.

|v|: Hamming weight of a binary polynomial v.

{0, 1}l[t] Set of all l-bit strings with Hamming weight t.

u
$←U : Variable u is sampled uniformly at random from the set U .

hj : j-th column of a matrix H, as a row vector.

?: Component-wise product of vectors.

ϕ Ring isomorphism between (r × r) circulant matrices and R.

Table 1: Notation.

1.2 Preliminaries
This document uses the following definitions.
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Definition 1 (Linear codes). A binary (n, k)-linear code C of length n dimension
k and co-dimension r = (n− k) is a k-dimensional vector subspace of Fn2 .

Definition 2 (Generator and Parity-Check Matrices). A matrix G ∈ Fk×n2 is called
a generator matrix of a binary (n, k)-linear code C if C = {mG | m ∈ Fk2}. A matrix
H ∈ F(n−k)×n

2 is called a parity-check matrix of C if C = {c ∈ Fn2 | HcT = 0}.

Definition 3 (Codeword and Syndrome). A codeword c ∈ C of a vectorm ∈ F(n−r)
2

is c = mG. A syndrome s ∈ Fr2 of a vector e ∈ Fn2 is sT = HeT .

A binary circulant matrix is a square matrix where each row is the rotation of
one element to the right of the preceding row. It is completely defined by its first
row. A block-circulant matrix is formed of circulant square blocks of identical size.
The size of the circulant blocks is called the order. The index of a block-circulant
matrix is the number of circulant blocks in a row. Formally, it is defined as follows.

Definition 4 (Quasi-Cyclic Codes). A (binary) quasi-cyclic (QC) code of index
n0 and order r is a linear code which admits as generator matrix a block-circulant
matrix of order r and index n0. A (n0, k0)-QC code is a quasi-cyclic code of index
n0, length n0r and dimension k0r.

There exists a natural ring isomorphism, denoted by ϕ, between the binary
r×r circulant matrices and the quotient polynomial ring R = F2[X]/(Xr−1). The
circulant matrix A whose first row is (a0, . . . , ar−1) is mapped to the polynomial
ϕ(A) = a0 + a1X + · · · + ar−1X

r−1. This allows to view all matrix operations as
polynomial operations. For every a = a0 + a1X + a2X

2 + · · · + ar−1X
r−1 in R,

define aT = a0 + ar−1X + · · ·+ a1X
r−1. This ensures ϕ(AT ) = ϕ(A)T .

The mapping ϕ can be extended to any binary vector of Fr2 . For all v =
(v0, v1, . . . , vr−1), we set ϕ(v) = v0+v1X+ · · ·+vr−1Xr−1. To stay consistent with
the transposition, the image of the column vector vT must be ϕ(vT ) = ϕ(v)T =
v0+vr−1X+ · · ·+v1Xr−1. It is easy to see that ϕ(vA) = ϕ(v)ϕ(A) and ϕ(AvT ) =
ϕ(A)ϕ(v)T .

The generator matrix of an (n0, k0)-QC code can be represented as a k0 × n0
matrix over R. Similarly any parity check matrix can be viewed as an (n0−k0)×n0
matrix over R. Respectively

G =

 g0,0 · · · g0,n0−1
...

...
gk0−1,0 · · · gk0−1,n0−1

 , H =

 h0,0 · · · h0,n0−1
...

...
hn0−k0−1,0 · · · hn0−k0−1,n0−1


with all gi,j and hi,j in R. In all respects, a binary (n0, k0)-QC code can be viewed
as an [n0, k0] code over the ring R = F2[X]/(Xr − 1).
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1.3 QC-MDPC Codes
A binary MDPC (Moderate-Density Parity-Check) code is a binary linear code
which admits a somewhat sparse parity check matrix, with a typical density of
order O(

√
n). Such a matrix allows the use of iterative decoders similar to those

used for LDPC (Low-Density Parity-Check) codes [10], widely deployed for error
correction in telecommunication. QC-MDPC codes are formally defined as follows.

Definition 5 (QC-MDPC code). An (n0, k0, r, w)-QC-MDPC code is an (n0, k0)
quasi-cyclic code of length n = n0r, dimension k = k0r, order r (and thus index
n0) admitting a parity-check matrix with constant row weight w = O(

√
n).

We will discuss in Section 5 the techniques to efficiently correct errors for BIKE.

2 Algorithm Specification (2.B.1)
BIKE algorithms (Setup, KeyGen, Encaps, and Decaps), building blocks (decoder,
random oracles, pseudorandom bits generation), and recommended parameters are
defined here.

Setup
- Input: λ, the target quantum security level.
- Output: the set of parameters {r, w, t, `} and hash functions {H,K,L}.

1. Select r, w, t, ` in the following way.

(a) r (block length): a prime s.t. (Xr − 1)/(X − 1) ∈ F2[X] is irreducible.
(b) w (row weight): an even positive integer such that w/2 is odd.
(c) t (decoding radius): a positive integer.
(d) ` (shared secret size): a positive integer.

While not technically part of the scheme parameters, the following quantities
are inherently defined by the Setup algorithm: n (code length), set to n = 2r
and d (block weight), set to d = w/2.

2. Select the functions H,K,L uniformly at random from the set of functions
with the following respective domains and ranges.

(a) H : {0, 1}` → {0, 1}2r[t] .

(b) K : {0, 1}r+2` → {0, 1}`.
(c) L : {0, 1}2r → {0, 1}`

The functions are modeled as random oracles. A concrete instantiation of
{H,K,L} needs to be associated with the scheme.
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KeyGen

- Input: parameters {n,w, t, `}.
- Output: the private key (h0, h1, σ) and the public key h.

1. Generate (h0, h1)
$←R2 both of odd weight |h0| = |h1| = w/2.

2. Generate σ $←{0, 1}` uniformly at random.
3. Compute h← h1h

−1
0 .

4. Return (h0, h1, σ) and h.

Encaps

- Input: the public key h.
- Output: the encapsulated key K and the ciphertext C = (c0, c1).

1. Generate m $←{0, 1}` uniformly at random.
2. Compute (e0, e1)← H(m).
3. Compute C = (c0, c1)← (e0 + e1h,m⊕ L(e0, e1)).
4. Compute K ← K(m,C).
5. Return (C,K).

Decaps

- Input: the private key (h0, h1, σ) and the ciphertext C = (c0, c1).
- Output: the decapsulated key K.

1. Generate (e′0, e
′
1)

$←R2.
2. Compute the syndrome s← c0h0.
3. Compute† {(e′′0, e′′1),⊥} ← decoder(s, h0, h1).
4. If (e′′0, e

′′
1)← decoder(s, h0, h1) and |(e′′0, e′′1)| = t set (e′0, e

′
1)← (e′′0, e

′′
1).

5. m′ ← c1 ⊕ L(e′0, e
′
1)

6. If H(m′) 6= (e′0, e
′
1) compute K ← K(σ,C).

7. Else compute K ← K(m′, C).
8. Return K.

† Invoke a decoding algorithm decoder that is associated with the scheme
(see next section). It returns either an error vector or a failure symbol ⊥.
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2.1 Decoding Failure Rate
Let decoder be a decoding algorithm used by Decaps. The algorithm takes some
values s, h0, h1 as input and returns an error vector (e0, e1) ∈ R2 or a decoding
failure indication, via the special failure symbol ⊥. Such a decoding failure occurs
when the recovered error vector does not match the input syndrome, i.e. e0h0 +
e1h1 = s, or it doesn’t have the correct weight t. Accordingly, the Decoding Failure
Rate of decoder is the probability that decoder(s, h0, h1) does not produce
(e0, e1) on input (s = e0h0 + e1h1, h0, h1), when e0, e1, h0, h1 are chosen uniformly
such that |h0| = |h1| = w/2 and |e0|+ |e1| = t.
For short, the Decoding Failure Rate is also called the DFR of decoder. In the
context of a specific decoder, it is further shortened to simply the DFR. The DFR
is a property of the decoding algorithm (not of the KEM).

2.2 The Black-Gray-Flip (BGF) Decoder
The decoding algorithm (aka decoder) that is associated with the instantiation of
BIKE is the Black-Gray-Flip (BGF) defined in [8]. It is described in Algorithm 1
using, for convenience, matrix notation (as in Definition 2 and 3).
The algorithm is defined for every set of system parameters (r, w, t) (that also
determine d = w/2 and n = 2r). It is characterized by three other parameters.
The first is NbIter - the number of iterations that it runs, and the second is τ
- a threshold gap. The third parameter is the threshold function (see below).
Relevant values of NbIter, τ , and of the threshold function must be specified for
every parameter set.
The algorithm invokes two functions.

• ctr(H, s, j). This function computes a quantity referred to as the counter
(aka the number of unsatisfied parity-checks of j). It is the number of ’1’ (set
bits) that appear in the same position in the syndrome s and in the hj (the
j-th column of the matrix H).

• threshold(S, i). This function is the threshold selection rule. It depends, in
general, on the syndrome weight S, the iteration number i, and on the system
parameters. This function may vary and is a parameter of the algorithm. Its
current value (given below) is independent of r and i.

The parameters used here with the BGF decoder are:

• For Level 1: NbIter = 5, τ = 3,
threshold(S, i) = max(d0.0069722 · S + 13.530e, 36)
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• For Level 3: NbIter = 5, τ = 3,
threshold(S, i) = max(d0.005265 · S + 15.2588e, 52)

Details on the design rationale, analysis, parameters choice, threshold function,
and DFR estimation, are provided in Section 5.

Algorithm 1 Black-Gray-Flip (BGF)
Parameters: r, w, t, d = w/2, n = 2r ; NbIter, τ , threshold (see text for details)
Require: H ∈ Fr×n2 , s ∈ Fr2
1: e← 0n

2: for i = 1, . . . ,NbIter do
3: T ← threshold(

∣∣s+ eHT
∣∣ , i)

4: e,black, gray← BFIter(s+ eHT , e, T,H)
5: if i = 1 then
6: e← BFMaskedIter(s+ eHT , e,black, (d+ 1)/2 + 1, H)
7: e← BFMaskedIter(s+ eHT , e, gray, (d+ 1)/2 + 1, H)

8: if s = eHT then
9: return e
10: else
11: return ⊥

12: procedure BFIter(s, e, T,H)
13: for j = 0, . . . , n− 1 do
14: if ctr(H, s, j) ≥ T then
15: ej ← ej ⊕ 1
16: blackj ← 1
17: else if ctr(H, s, j) ≥ T − τ then
18: grayj ← 1

19: return e,black, gray

20: procedure BFMaskedIter(s, e,mask, T,H)
21: for j = 0, . . . , n− 1 do
22: if ctr(H, s, j) ≥ T then
23: ej ← ej ⊕maskj

24: return e
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2.3 Pseudorandom Bits Generation
KeyGen, Encaps, and Decaps involve three types of pseudorandom bits stream
generation.

• With no constraints on the output (Alg. 2).

• With odd weight (Alg. 3).

• With a specific weight w (Alg. 4).

Remark 1. Alg. 4 is a “Rejection Sampling" method. It generates a list of w
distinct positions between 0 and r − 1. This list is also viewed, interchangeably, as
the support of a string U of r bits (where |U | = w).

AES-CTR based pseudorandom bits generation. The building block
for these algorithms is AES-256 (256 bits key) in CTR mode using a 96-bit zero IV
(IV = 096) and a 32-bit counter starting from 032. Suppose that seed is a 256-bit
key and µ is a positive integer. Denote the µ blocks (of 128 bits each) output of
AES-CTR with that key by AES-CTR (seed, µ). Let ν be a positive integer. Then,
the least significant ν bits of AES-CTR (seed, 1 + floor ((ν/128))) are denoted by
AES-CTR-Stream (seed, ν).

Algorithm 2 GenPseudoRand(seed, len)
Require: seed (32 bytes)
1: return AES-CTR-Stream (seed, len)

Algorithm 3 GenPseudoRandOddWeight(seed, len)
Require: seed (32 bytes), len
1: z = GenPseudoRand(seed, len)
2: if |z| is even then z[0] = z[0] ⊕1 (z[0] is the least significant bit of z)
3: return z

7



Algorithm 4 WAES-CTR-PRF(s, wt, len)
Require: wt (32 bits), len
Ensure: A list (wlist) of wt bit-positions in [0, . . . , len− 1].
1: wlist= φ; ctr = 0; i = 0
2: s = AES-CTR-Stream(seed,∞) . ∞ denotes "sufficiently large"
3: mask = (2ceil(log2r) − 1)
4: while ctr < wt do
5: pos = s[32(i+ 1)− 1 : 32i] & mask . & denotes bitwise AND
6: if ((pos < len) AND (pos 6∈ wlist)) then
7: wlist = wlist ∪ {pos}; ctr = ctr + 1; i = i+ 1

8: return wlist, s

2.4 The Functions H,K,L

The functions H,K,L are modeled as random oracles. Their concrete instantiation
is the following.

• H is instantiated as a pseudorandom expansion of a seed of length ` bits
that is input to the function. It is generated by invoking Alg. 4 with the
approproate parameters.

• K is instantiated as the ` = 256 least significant bits of the standard SHA384
hash digest of the input. The notation K(m,C) where C = (c0, c1) (and
similarly, K(m′, C)) refers to hashing an input of {0, 1}`+r+` bits that is
the concatenation of m, c0 and c1. Here, the bits of m are consumed (by
SHA384) first, then the bits of c0, and then the bits of c1.

• L is instantiated as the ` = 256 least significant bits of the standard SHA384
hash digest of the input. The notation L(e0, e1) (and similarly, L(e′0, e

′
1) )

refers to hashing an input of {0, 1}r+r bits that is the concatenation of e0
and e1 Here, the bits of e0 are consumed (by SHA384) first, and then then
the bits of e1.

2.5 BIKE Parameters
The NIST call for proposals indicates several security categories that are related
to the hardness of a key search attack on a block cipher, like AES. BIKE targets
security levels 1 and 3, corresponding to the security of AES-128 and AES-192,
respectively.
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For all security levels, the key length parameter is fixed to ` = 256. A parameter
set for BIKE is a triple (r, w, t). The suggested parameters are summarized in
Table 2.

Security r w t

Level 1 12,323 142 134
Level 3 24,659 206 199

DFR
2−128

2−192

Table 2: Suggested BIKE Parameters. The Decoding Failure Rate (DFR) is a characteris-
tic of the specific decoder used in a given instantiation of BIKE, as explained in Section 2.1,
above. The DFR values in the table indicate a target DFR that a decoder needs to meet
by the proposed design.

3 The Security of BIKE (2.B.4)
This section discusses various security aspects relative to BIKE. It is assumed
here that the instantiation of H,K,L is an acceptable approximation for random
oracles.

BIKE with the BGF decoder

BIKE instantiated with the BGF decoder is an IND-CPA secure KEM.
A formal argument is given in Appendix A.

BIKE with a decoder that has a provably low DFR

Suppose that BIKE is instantiated with a decoding algorithm decode where:

1. decode has a DFR of 2−128 for Level-1 (and 2−192 for Level-3).

2. decode runs in a constant number of steps.

3. The probability for a decoding success but a decryption failure is negligible.

Then, the resulting BIKE instantiation is an IND-CCA secure KEM.
A proof is given in [9] and a summary is included in Appendix A.

9



Practical security considerations for using BIKE

• BIKE is designed to be used with ephemeral keys. The party that initiates a
session needs to: a) Generate a fresh private/public key pair for every session;
b) Refuse to decapsulate more than one incoming ciphertext (presumably the
result of a legitimate encapsulation) with that key. The IND-CPA security
property suffices for this type of usage.

• An instantiation of BIKE can use different decoders without affecting in-
teroperability. If a (practical) decoder with a proven upper bound for a
sufficiently low DFR that can be implemented in constant-time is found and
used, the instantiation of BIKE with this decoder would be IND-CCA secure.

• The DFR of the BGF decoder has been studied by means of simulations and
extrapolations, and the details are provided in Section 5. These techniques
provide a strong indication that the DFR is (sufficiently) small with the rec-
ommended parameters. This indication may be acceptable from a practical
viewpoint, and could be strengthened by further studies. However, at the
moment, the current analysis gives only an estimation of the DFR, and not
a proven upper bound. Consequently, the BIKE instantiation with the BGF
decoder does not make a formal claim for IND-CCA security, although by
any practical considerations, this is probably the case.

• An IND-CCA secure KEM could support a long-term use of a single key.
However, this usage model implies the loss of forward secrecy.

4 Design Rationale and Considerations (2.B.6)
This section explains briefly the design rationale and some considerations about
the specification of BIKE, by answering a sequence of questions that may occur.

4.1 What is BIKE and how should it be used?
4.1.1 What is BIKE in one sentences?

BIKE is a Key Encapsulation Mechanism (KEM) based on Quasi-Cyclic Moderate
Density Parity-Check (QC-MDPC) codes, that is proposed for the Post-Quantum
Cryptography (PQC) Standardization project of the National Institute of Stan-
dards and Technology (NIST).
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4.1.2 How many versions of BIKE are proposed?

There is only one version of BIKE, defined with two parameter sets (r, w, t): one
for Security Level 1 and one for Level 3. Some additional parameters are associated
with the specific BGF decoder that is associated with the proposal.

4.1.3 What is the security claim of BIKE?

When BIKE is instantiated with the BGF decoder and the recommended parame-
ters, it is an IND-CPA secure KEM. It targets Security Levels 1 and 3, as defined in
the NIST call for proposals. There is some probability that a session using BIKE
would fail, i.e., not end up with a successfully agreed shared key. BIKE design
target is to make this probability at most 2−128 for Security Level 1 and 2−192 for
Security Level 3.

4.1.4 How should BIKE be used?

BIKE should be used in a communication protocol (e.g., TLS) with ephemeral
keys, i.e., with a fresh public/private key pair for every key exchange session. In
particular, decapsulation with a given private key should be allowed only once.
Such usage model provides forward secrecy. A KEM with IND-CPA security is
sufficient for such usage.

4.1.5 Is BIKE an IND-CCA secure KEM?

If BIKE is used with a decoder that has a Decoding Failure Rate (DFR) of the
required magnitude, then it is an IND-CCA secure KEM [9]. The BGF decoder
that is associated with BIKE targets a DFR of 2−128 and 2−192 for the respective
levels of security. This is indeed the estimated DFR. The estimation suggests a
high confidence level through a methodology that uses extensive simulations and
extrapolations. Since currently there is no formal proof for an upped bound on the
DFR, BIKE is not declared formally as an IND-CCA secure KEM.

4.1.6 What happens if a key pair is inadvertently used twice?

This scenario is a violation of the recommended use of BIKE. Formally, unless
there is a proof for the DFR of the decoder, this affects the security guarantee.
Nevertheless, it does not seem unreasonable to believe that such a violation would
not open the door to a practical exploitation.
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4.2 Interoperability
4.2.1 Can BIKE be used with a different decoder?

Yes, but caution is needed. First, a protocol that uses BIKE should use ephemeral
keys. The choice of a different decoder (or the same decoder with different param-
eters) does not affect interoperability. Such a choice could potentially speed up
Decaps at the expense of increasing the (failure) probability that a session does
not end up with a successfully exchanged shared key. As long as this probability
is deemed tolerable in the overall system context, applications are free to select a
decoder as an implementation choice. This means that decoders can be defined,
tuned, and optimized for specific platforms with specific constraints. If an instanti-
ation of BIKE targets IND-CCA security, it must choose a decoder with a (proven)
sufficiently low DFR. If BIKE is selected for standardization, NIST could specify
a list of allowable decoders, or requirements for allowable decoders.

4.2.2 Does the decoder have to check for a decoding failure?

There are equivalent ways to check the set of logical conditions. A decoder decoder
can be defined to always return an error vector (e′0, e

′
1) and no other indication.

Then, decoder succeeded if and only if e′0h0+e′1h1 = s and |(e′0, e′1)| = t, and oth-
erwise it failed. Checking these conditions is moved outside the scope of decoder,
and becomes part of Decaps.

4.2.3 Can BIKE be used with another pseudorandom generator?

Yes, but some caution is needed. An alternative pseudorandom generation algo-
rithm can be acceptable if it meets the security requirements (indistinguishability
from random strings). An acceptable alternative does not affect interoperability.

If BIKE is selected for standardization, NIST could specify a list of allow-
able pseudorandom generation algorithms, or requirements for allowable algorithms
should be specified.

4.2.4 Can BIKE be used with a smaller block size (r)?

In theory, yes: this could have been specified as an option, but a value of r affects
interoperability. For the sake of simplicity, BIKE is specified with one choice only.
The rationale behind this choice is explained in 4.3.7.
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4.3 Design rationale
4.3.1 How is BIKE constructed?

BIKE is built upon the Niederreiter framework, with some tweaks. It also ap-
plies the implicit-rejection version of Fujisaki-Okamoto transformation (FO 6⊥, as
described in [13]) for converting a δ-correct PKE into an IND-CCA KEM.

4.3.2 What happened to the previous versions of BIKE?

The previous iteration of the proposal included six variants, namely BIKE-1, BIKE-
2, BIKE-3, BIKE-1-CCA, BIKE-2-CCA and BIKE-3-CCA. Following NIST’s sug-
gestion to reduce the number of options in the proposal, the designers of BIKE
decided to consolidate BIKE to one version only, namely BIKE-2-CCA. It is now
called simply BIKE. The previous versions remain available at the website: https:
//bikesuite.org.

4.3.3 Is BIKE the same as the previously-known BIKE-2-CCA?

Not exactly, because some minor changes were introduced in the Encaps and Decaps
algorithms. These changes are recommended in [9], in order to prove that BIKE is
IND-CCA secure if the associated decoder has a sufficiently low DFR. Details are
provided in the Formal Security Discussion (Appendix A) .

4.3.4 Why keep the Fujisaki-Okamoto transformation?

This is a design choice that targets simplicity. Indeed, it is possible to build a
version of BIKE that does not apply the FO 6⊥ transformation and targets only
IND-CPA security. However, the difference in the performance is negligible (see
[6]) and does not justify the complication of maintaining such a design as a separate
version.

4.3.5 Why is BIKE designed over the Niederreiter framework?

The design of BIKE is based on the Niederreiter framework because it requires
only half the communication bandwidth compared to an analogous design over the
McEliece framework. The trade-off associated with this choice is the cost of the
(polynomial) inversion required for the key generation.

4.3.6 How can BIKE support polynomial inversion in KeyGen?

The cost of polynomial inversion was considered too prohibitive until recently (es-
pecially with ephemeral keys usage), but the fast polynomial inversion algorithm
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proposed in [7] changed the picture. This algorithm is similar to the Itoh-Tsuji
inversion algorithm, where the essence is that computing a2k is efficient. The Itoh-
Tsuji algorithm inverts an element of F2k , where the field elements are represented
in normal basis. The new algorithm generalizes it to the ring of polynomials used
in BIKE (and other QC-MDPC schemes): F2[x]/〈(x−1)h〉 with irreducible h. De-
tails are provided in [7]. This algorithm is implemented in constant-time and used
in the Additional Software Implementation Code Package (see Section 7.3).

4.3.7 How was the block length r chosen?

The block length r determines the sizes of the public key, the ciphertext, and
significantly affects the overall latency and the communication bandwidth. By the
design of BIKE, r needs to be prime and satisfy the requirement that (Xr−1)/(X−
1) ∈ F2[X] is irreducible. It needs to be sufficiently large to satisfy (together with
the choice of w and t) the scheme’s security target and the DFR target for the
decoder. In addition, [7] suggests that the inversion algorithm is especially efficient
if the Hamming weight of (r − 2), is small. Indeed, for r = 12323, |(r − 2)| = 4,
and for r = 24659 |(r − 2)| = 5.

4.3.8 How was the pseudorandom generation determined?

The pseudorandom generation uses the standard AES-CTR with a 256-bit key. It
is very efficient on modern processors that have dedicated AES instructions (e.g.,
AES-NI). In all cases the generated pseudorandom stream is short enough to ignore
the incremental distinguishing advantage in the security analysis of the scheme.

4.3.9 How were the functions H,K,L designed?

BIKE specification models H,K,L as random oracles. The concrete realization of
K and L relies on the standard SHA384 hash function that has sufficient capacity
in its compression function, and is accepted by NIST for this purpose. The function
H uses 256 bits as a key, and AES-CTR based pseudorandom expansion.

5 Decoding algorithms and DFR estimation

5.1 Preliminaries
The decoding algorithm (decoder) is a critical element of the decapsulation algo-
rithm (Decaps) of BIKE. Its purpose is to find the unique solution of a decoding
problem. During a key exchange session, the initiating party executes KeyGen and
sends the public key to the responding party that is expected to send back some
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ciphertext. Subsequently, the initiating party executes Decaps, which, along with
other steps specified in Section 2, invokes the decoding algorithm.

The decoder needs to be designed with the following targets: a) It has a suffi-
ciently low DFR that satisfies the security requirements of the usage of the KEM;
b) It runs a fixed number of steps; c) Its performance on the target platform is
acceptable, and desirably high.

Decoder Description: For BIKE, we will consider the decoding as a black box
running in bounded time and which either returns a valid error pattern or fails. As
we describe it, it takes as arguments a (sparse) parity check matrix H ∈ Fr×n2 and
a syndrome s ∈ Fr2 . When the decoder does not fail, the returned value e is such
that s = eHT .

For given BIKE parameters r, w, t, any h ∈ R = F2[X]/(Xr − 1) will be
identified with the r × r circulant matrix whose first row is h. The decoder input
(H, s) is such that:

• the matrix H is block-circulant of index 2, that is H = (hT0 hT1 ) with
(h0, h1) ∈ R2 such that |h0| = |h1| = w/2

• the syndrome s is equal to e0h0 + e1h1 for some (e0, e1) ∈ R2 such that
|e0|+ |e1| = t.

The decoder defined in Section 2.1 fails if it does not return (e0, e1) on input
(s = e0h0 + e1h1, h0, h1). The Decoding Failure Rate is defined as the probability
for the decoder to fail when the input is (s = e0h0+e1h1, h0, h1) with (h0, h1, e0, e1)
distributed uniformly such that |h0| = |h1| = w/2 and |e0|+ |e1| = t.

5.2 Black-Gray Decoding
The authors of [6] discussed the importance of defining a decoder as an algorithm
that runs a fixed number of steps (rather then a maximal number of steps). Such
a definition also makes the algorithm implementable in constant-time, which is
a required property from a cryptographic primitive. Of course, a real application
needs to actually use a concrete constant-time implementation. In addition, [6] also
identified the Black-Gray decoder as providing a favorable trade-off between: a) the
number of steps; b) the estimated resulting DFR; c) the performance of a constant-
time implementation. The subsequent publication [8] by the same authors defined
several variants of the Black-Gray decoder, and studied the resulting trade-offs.
One variant is the Black-Gray-Flip (BGF) decoder that starts with one Black-Gray
iteration and continues with several Bit-Flipping iterations. It was identified in [8]
as the most efficient variant, at least for the studied platforms (see Algorithm 1 in
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[8]). BIKE uses the BGF decoder with tuned threshold functions that are based
on fresh extensive simulations.

Threshold Selection Rule threshold(S, i). The rule that is currently used
derives from BIKE Round 1. In practice, for each security level it is given as an
affine function of the syndrome weight. The numerical values are given in Section
2.2 for Level 1 and 3. The coefficients of the current affine functions depend on
the system parameters w and t, but not on r. The current rule do not depend of
the iteration number i either. Other strategies, depending on i and r are possible.
Experiments indicate that those more elaborated strategies do not perform better
(for the BGF decoder). Our simulations and estimated DFR claims are based on
the rules given in the specification.

5.3 Estimating the DFR for High Block Size
The Low Impact of Block Size on Computational Assumptions.
The block size r must be chosen large enough to allow efficient decoding. In
practice one must choose r = Ω(wt). The higher r the lower the DFR. On the
other hand, the best known attacks for codes of rate 1/2 as we have here, are of
order 2t(1+o(1)) or 2w(1+o(1)). This is corrected by a factor polynomial in r which
is very small in practice. An interesting consequence is that if w and t are fixed,
a moderate modification of r (say plus or minus 50%) will not significantly affect
the resistance against the best known key and message attacks. This will simplify
the extrapolation methodology described in the next paragraph.

Estimating the DFR by Extrapolation. Low DFR, e.g., 2−128, as re-
quired for CCA security, cannot be directly estimated by simulation. Instead,
simulations are combined with extrapolations, as described next. First, the DFR
is measured for smaller block sizes r, for which simulations are meaningful (and
assumed to provide a reliable estimation). Subsequently, one can define a curve
based on the sample of r − DFR acquired values, an the curve is extrapolated
to a larger block size for which the extrapolated DFR reaches the target. Known
asymptotic models for simpler variants of bit flipping, as [21, 19], predict a concave
shape for the curve in the relevant range of r values. Assuming a similar behavior,
as described in [20], a linear extrapolation over two (acquired) points shoots to an
overestimation of the required r (i.e., a conservative estimation). More extensive
simulations can refine the DFR estimation and hence lead to smaller (more desir-
able) sufficient r. References [6] and [8] discuss simulation results with different
extrapolations for several decoders, including the Black-Gray variants that are used
for BIKE.
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6 Known Attacks (2.B.5)
This section discusses the practical security aspects of our proposal.

6.1 Hard Problems and Security Reduction
In the generic (i.e. non quasi-cyclic) case, the two following problems were proven
NP-complete in [3].

Problem 1 (Syndrome Decoding – SD).
Instance: H ∈ F(n−k)×n

2 , s ∈ Fn−k2 , an integer t > 0.
Property: There exists e ∈ Fn2 such that |e| ≤ t and eHT = s.

Problem 2 (Codeword Finding – CF).
Instance: H ∈ F(n−k)×n

2 , an integer t > 0.
Property: There exists c ∈ Fn2 such that |c| = t and cHT = 0.

In both problems the matrix H is the parity check matrix of a binary linear
[n, k] code. Problem 1 corresponds to the decoding of an error of weight t and
Problem 2 to the existence of a codeword of weight t. Both are also conjectured to
be hard on average. This is argued in [1], together with results which indicate that
the above problems remain hard even when the weight is very small, i.e. t = nε,
for any ε > 0. Note that all known solvers for one of the two problems also solve
the other and have a cost exponential in t.

6.1.1 Hardness for QC codes.

Coding problems (SD and CF) in a QC-code are NP-complete, but the result does
not hold for when the index is fixed. In particular, for (2, 1)-QC codes, which are
of interest to us, we do not know whether or not SD and CF are NP-complete.

Nevertheless, the problems are believed to be hard on average (when r grows)
and the best solvers in the quasi-cyclic case have the same cost as in the generic
case up to a small factor which never exceeds the order r of quasi-cyclicity. The
problems below are written in the QC setting, and we assume that the parity check
matrix H is in systematic form, that is, the first (n0 − k0)× (n0 − k0) block of H
is the identity matrix. For instance, for (2, 1)-QC codes, the parity check matrix
(over R) has the form (

1 h
)
with h ∈ R.

For BIKE, we are interested only in the above type of QC codes and to the two
related hard problems below:
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Problem 3 ((2, 1)-QC Syndrome Decoding – (2, 1)-QCSD).
Instance: s, h in R, an integer t > 0.
Property: There exists e0, e1 in R such that |e0|+ |e1| ≤ t and e0 + e1h = s.

Problem 4 ((2, 1)-QC Codeword Finding – (2, 1)-QCCF).
Instance: h in R, an integer t > 0.
Property: There exists c0, c1 in R such that |c0|+ |c1| = t and c0 + c1h = 0.

In the decisional variant of the (2,1)-QCSD problem, an adversary has to decide
for appropriately sampled (s, h) whether there exists an error that matches the
expected property. Due to the restriction on the weight of the sampling, this leads
to sampling h uniformly with an odd weight, and s with an even weight. As they
are presented, the problems have the appearance of sparse polynomials problem,
but in fact they are equivalent to the generic quasi-cyclic decoding and codeword
finding problems.

For our security proof, we will use the decisional versions of the (2, 1)-QCSD
and (2, 1)-QCCF problems, instead of their search versions given in Problems 3 and
4, respectively. We argue that the search and decisional versions of these problems
have similar hardness.

The message security for BIKE relies on the decisional version of Problem 3,
as defined next.

Problem 3a (Decisional parity-(2, 1)-QCSD).
Instance: Given c, h in R, an integer t > 0, |h| odd and |c|+ t even.
Property: Decides if there exist e0, e1 in R such that |e0|+|e1| = t and e0+e1h = c.

There are two differences between the search problem given in Problem 3 and its
decisional version given in Problem 3a. One is a parity condition on the instance,
and the other is the equality for the error weight restriction instead of inequality.
Using the inequality is a common practice in coding theory and corresponds to a
situation where one wishes to decode up to a bound. In fact, this problem was
written in this way in the Berlekamp, McEliece and Von-Tilborg’s seminal paper
[3]. The two problems (differing on whether the equality or inequality is used) are
closely related and are essentially of same difficulty. Note that in the same seminal
paper, the codeword finding problem is described with an equality.

The other difference concerns the parity property. The parity of a sum (re-
spectively product) is equal to the sum (respectively product) of the parities – this
comes directly from the quasi-cyclicity and the underlying polynomial ring struc-
ture. The weight of h is odd because, by construction, public keys have an odd
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weight. Consequently, s and (e1, e2) must have the same parity else the property
is trivially false.

The key indistinguishability for BIKE requires a balanced variant of Problem 4,
as defined next.

Problem 4a (Decisional balanced-(2, 1)-QCCF). (w even, w/2 odd)
Instance: Given h in R, |h| odd, an integer w > 0.
Property: Decides if there exist h0, h1 in R such that |h0| = |h1| = w/2 and
h0 + h1h = 0.

To conclude our remarks, we reiterate that none of the variations described
above have a significant impact on the hardness of the problems. The parity issue
is purely technical. In fact, for given system parameters, the parity of many objects
appearing in the protocol is imposed. We need to impose the same parity in the
sequence of games or we could obtain a trivial (but meaningless) distinguisher. On
the other hand, the matter of balancedness could in principle affect the hardness of
the problem, but in practice the impact is very limited. This is because balanced
words appear with polynomial probability, and thus the balanced problems cannot
be fundamentally easier than generic ones. In light of these considerations, we can
simply refer to the generic problems, both in the statement of Theorem 1 and in
its proof.

Remark 2. In the context of the general syndrome decoding problem, there is a
search to decision reduction. For the quasi-cyclic case, no such reduction is known,
however the best known attacks for the decisional case correspond to the search
case.

In the current state of the art, the best known techniques for solving those
problems are variants of Prange’s Information Set Decoding (ISD) [17]. We remark
that, though the best attacks consist in solving one of the search problems, the
security reduction of our scheme requires the decision version of Problem 2.

6.2 Attacks
6.2.1 Information Set Decoding

The best asymptotic variant of ISD is due to May and Ozerov [16], but it has a
polynomial overhead which is difficult to estimate precisely. In practice, the BJMM
variant [2] is probably the best for relevant cryptographic parameters. The work
factor for classical (i.e. non quantum) computing of any variant A of ISD for
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decoding t errors (or finding a word of weight t) in a binary code of length n and
dimension k can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error rate
t/N . It has been proven in [22] that, asymptotically, for sublinear weight t = o(n)
(which is the case here as w ≈ t ≈

√
n), we have c = log2

1
1−R for all variants of

ISD.
In practice, when t is small, using 2ct with c = log2

1
1−R gives a remarkably

good estimate for the complexity. For instance, non asymptotic estimates derived
from [12] gives WFBJMM(65542, 32771, 264) = 2263.3 “column operations” which is
rather close to 2264. This closeness is expected asymptotically, but is circumstantial
for fixed parameters. It only holds because various factors compensate, but it holds
for most MDPC parameters of interest.

6.2.2 Exploiting the Quasi-Cyclic Structure.

Both codeword finding and decoding are a bit easier (by a polynomial factor) when
the target code is quasi-cyclic. If there is a word of weight w in a QC code then
its r quasi-cyclic shifts are in the code. In practice, this gives a factor r speedup
compared to a random code. Similarly, using Decoding One Out of Many (DOOM)
[18] it is possible to produce r equivalent instances of the decoding problem. Solving
those r instances together saves a factor

√
r in the workload.

6.2.3 Exploiting Quantum Computations.

Recall first that the NIST proposes to evaluate the quantum security as follows:

1. A quantum computer can only perform quantum computations of limited
depth. They introduce a parameter, MAXDEPTH, which can range from 240

to 296. This accounts for the practical difficulty of building a full quantum
computer.

2. The amount (or bits) of security is not measured in terms of absolute time
but in the time required to perform a specific task.

Regarding the second point, the NIST presents 6 security categories which
correspond to performing a specific task. For example Task 1, related to Category
1, consists of finding the 128 bit key of a block cipher that uses AES-128. The
security is then (informally) defined as follows:
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Definition 6. A cryptographic scheme is secure with respect to Category k iff. any
attack on the scheme requires computational resources comparable to or greater than
those needed to solve Task k.

In what follows we will estimate that our scheme reaches a certain security
level according to the NIST metric and show that the attack takes more quan-
tum resources than a quantum attack on AES. We will use for this the following
proposition.

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover’s algorithm for finding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover’s attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

This proposition is proved in Section B of the appendix. The point is that
(essentially) the best quantum attack on our scheme consists in using Grover’s
search on the information sets computed in Prange’s algorithm (this is Bernstein’s
algorithm [4]). Theoretically there is a slightly better algorithm consisting in quan-
tizing more sophisticated ISD algorithms [14], however the improvement is tiny and
the overhead in terms of circuit complexity make Grover’s algorithm used on top
of the Prange algorithm preferable in our case.

6.2.4 The GJS Reaction Attack

BIKE is currently designed to use ephemeral keys. This usage defeats the GJS
reaction attack [11]. Indeed, an adversary has (at most) a single opportunity to
submit a decryption query, and this does not allow to create statistics on different
error patterns for a specific key.

6.3 Choice of Parameters
Let WF(n, k, t) denote the workfactor of the best ISD variant for decoding t errors
in a binary code of length n and dimension k. Hereafter, only codes of transmis-
sion rate 0.5 (i.e., length n = 2r and dimension r) are considered. In a classical
setting, the best solver for Problem 3 has a cost WF(2r, r, t)/

√
r, the best solver

for Problem 4 has a cost WF(2r, r, w)/r.
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As remarked above, with WF(n, k, `) ≈ 2` log2
n

n−k gives a crude but surprisingly
accurate, parameter selection rule. The target security levels correspond to AESλ
with λ ∈ {128, 192}. To reach λ bits of classical security, w, t and r are chosen
such that

• Problem 3 with block size r and weight t and Problem 4 with block size r
and weight w must be hard enough. In other words,

λ ≈ t− 1

2
log2 r ≈ w − log2 r. (1)

This equation has to be solved in addition to the constraint that r must be large
enough to decode t errors in (2, 1, r, w)-QC-MDPC code, with a small failure rate.
Finally, r is chosen such that: a) 2 is primitive modulo r; b) r is a prime number
(note that 2 is primitive modulo r does not imply primality. A counter example is
r = 10201 which is composite).

This choice thwarts the so-called squaring attack [15]. Also, it implies that
(Xr − 1) has only two irreducible factors (one of them is X − 1). This is an
insurance against an adversary trying to exploit the structure of F2[X]/〈Xr − 1〉
when (Xr−1) has small factors, other than (X−1). This produces the parameters
proposed in the document.

The quantum speedup is at best quadratic for the best solvers of the problems
on which the discussed system. By §6.2.3, it follows that the proposed set of
parameters correspond the Security Levels 1 and 3, as described in the NIST call
for quantum safe primitives.

7 BIKE Performance (2.B.2)
This section discusses the essential characteristics and performance of BIKE.

7.1 Memory and Communication Bandwidth
Table 3 summarizes the minimum memory requirements for BIKE.

Quantity Size Level 1 Level 3

Private key `+ w · dlog2(r)e 2, 244 3, 346

Public key r 12, 323 24, 659

Ciphertext r + ` 12, 579 24, 915

Table 3: Private Key, Public Key and Ciphertext sizes (in bits).
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Remark 3. The private key consists of the vectors (h0, h1) ∈ R with |h0| = |h1| =
w/2 and (σ). Both h0 and h1 can be represented by r bits. Alternatively, a more
compact representation is listing the w/2 positions of the set bits. This listing yields
a (w2 · dlog2(r)e)-bits representation. Therefore, the size for this part of the private
key is (w · dlog2(r)e)-bits. Since dlog2(r)e < 16 for the proposed parameter sets, an
implementation may prefer (for simplicity) to store these vectors as a sequence of w
16-bits elements. The second part of the private key, (σ), requires ` bits of storage.
In total, BIKE private keys can be stored in a container of (`+w · dlog2(r)e) bits.
Applications may choose to explore the possibility of generating the private key on
the fly, from a (secured) seed to obtain a favorable memory vs. latency trade-off.

Table 4 shows the communication bandwidth cost per message.

Message Flow Message Size Level 1 Level 3

Init. → Resp. h r 12, 323 24, 659

Resp. → Init. C r + ` 12, 579 24, 915

Table 4: BIKE communication bandwidth (in bits).

7.2 Reference Implementation
The reference implementation of BIKE is available at https://bikesuite.org/
reference.html. It is a pure C implementation intended to provide readability and
help researchers get familiarized with the BIKE algorithms. It is not designed to
run in constant-time, as required for real-world implementation to offer side-channel
resistance. For real-world performance characterization, the reader is referred to
the Additional Implementation numbers described in section 7.3, which is constant-
time and leverages efficient platform instruction sets.

7.3 Additional Software Implementation
The Additional Software Implementation Code Package for BIKE was developed
by Nir Drucker, Shay Gueron, and Dusan Kostic. It is maintained in the github
repository github.com/awslabs/bike-kem.
The package includes the following implementations:

1. PORTABLE: a C (C99) portable code implementation.
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2. AVX2: implementation that leverages the AVX2 architecture features. It is
written in C (with C intrinsics for AVX2 functions).

3. AVX512: implementation that leverages the AVX512 architecture features.
It is written in C (with C intrinsics for AVX512 functions). This implementa-
tion can also be compiled to use the latest vector-PCLMULQDQ instruction
that is available on the Intel IceLake processors.

The package includes testing and it uses the KAT generation utilities provided
by NIST. The code is “stand-alone”, i.e., it does not depend on external libraries.
All the functionalities available in the package are implemented in constant-time,
which means that: a) No branch depends on a secret piece of information; b) All
the memory access patters are independent of secret information.

Performance benchmarking details. The performance is reported here in
processor cycles, and reflects the performance per single core. The measurements
methodology follows the description in [5].

The benchmarking platform. The platform used in the experiments was
equipped with 10th generation Intel®CoreTM processor (microarchitecture code-
name “Ice Lake”[ICL]). The machine is Dell XPS 13 7390 2in1 laptop with Intel®CoreTM

i7-1065G7 CPU working at 1.30GHz, with 16 GB RAM, 48K L1d cache, 32K L1i
cache, 512K L2 cache, and 8MiB L3 cache. The CPU supports AVX512 instruction
set and vector-PCLMULQDQ instruction. The Intel® Turbo Boost Technology
was turned off for the experiments in order to force a fixed frequency and consis-
tently measure performance in processor cycles.

OS and compilation. The code was compiled with gcc (version 9.2.1) and ran
on a Linux OS (Ubuntu 19.04).

Performance numbers

Table 5: BIKE Level-1, r = 12323, w = 142, t = 134. Decoder BGF with 5 iterations.
Performance in 103 cycles.

AVX2 AVX512 VPCLMUL
KeyGen 600 585 470
Encaps 220 205 195
Decaps 2220 1356 1280
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Table 6: BIKE Level-3, r = 24659, w = 206, t = 199. Decoder BGF with 5 iterations.
Performance in 103 cycles.

AVX2 AVX512 VPCLMUL
KeyGen 1780 1760 1280
Encaps 465 435 410
Decaps 6610 3825 3500

Remark 4. A meaningful measure for the efficiency of the KEM, in the case where
it is used with ephemeral keys is the cumulative latency of KeyGen and Decaps. The
reason is that the communicating party that initiates the exchange executes KeyGen
subsequently executes Decaps. The numbers reported in Tables 5 and 6 indicate that
KeyGen is significantly faster than Decaps on modern platforms with AVX2 and
AVX512 support. This property is due to the PCLMULQDQ instruction, and even
more so to the newer vector-PCLMULQDQ instruction.
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7.4 Hardware Implementation
The Hardware Implementation Code for BIKE was developed by Jan Richter-
Brockmann and Tim Güneysu. The hardware implementation includes

1. Reference implementation for Key Generation Level 1

2. Reference implementation for Key Generation Level 3

3. Reference implementation for Encapsulation will be added as soon as possible

4. Reference implementation for Decapsulation will be added as soon as possible

All the hardware files are published on the BIKE website and can be found
here https://bikesuite.org/. The key generation design is challenging due to the
costly polynomial inversion.

Implementation Results The implementation results are summarized in Ta-
ble 7 including hardware utilization and timing behavior. All results were generated
for an Artix-7 FPGA (xc7a100). Since the hardware implementation consumes only
590 slices and four BRAMs, it is perfectly suited for small devices.

Table 7: Implementation results on an Artix-7 (xc7a100) FPGA for the key generation.

Resources Performance
Logic Memory Area Cycles Frequency Latency

LUT FF BRAM Slices Cycles (average) MHz ms

Level 1 1 865 589 4 590 7 370 429 135 54.54

Level 3 1 884 557 5 593 30 447 947 131 231.4

Estimations The multiplier required for the key generation and encapsulation
was highly optimized in order to provide a higher throughput. Based on this
module, Table 8 provides performance numbers for the estimated latency (in clock
cycles) for the hardware implementation of the encapsulation. The parameter d de-
fines the internally used bus width and can be chosen from the setD ∈ {32, 64, 128}.
Theoretically larger values are possible but the available hardware resources would
be exceeded.

The work regarding an implementation of the decapsulation is currently ongo-
ing. Implementation results will be added as soon as possible.
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Table 8: Estimated latency in clock cycles for the encapsulation for both security levels
and for different d.

Security d = 32 d = 64 d = 128

Level 1 162 000 50 000 22 000

Level 3 610 000 164 000 52 000

8 Known Answer Tests – KAT (2.B.3)

8.1 KAT for BIKE
The KAT files of BIKE are available in:

• req file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level1_3114.req

• rsp file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level1_3114.rsp

• req file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level3_6198.req

• rsp file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level3_6198.rsp
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A Formal Security Discussion
The BIKE protocol flow is obtained by composing a “basic” KEM1 with a one-time
pad to define an IND-CPA secure PKE, which is then turned into the “final” KEM
with some additional technical steps such as re-encryption and integrity checks.
The initial KEM follows Niederreiter’s framework with a systematic parity check
matrix, and uses an MDPC decoder (such as that given in Algorithm 1). The
parameters {r, w, t, `} and the hash function L are obtained using the same Setup
algorithm given at the beginning of Section 2. The KEM flow is described below.

KeyGen

- Input: parameters {r, w, t, `}.
- Output: the private key (h0, h1) and the public key h.

1. Generate (h0, h1)
$←R2 both of odd weight |h0| = |h1| = w/2.

2. Compute h← h1h
−1
0 .

3. Return (h0, h1) and h.

Encaps

- Input: the public key h.
- Output: the encapsulated key K and the ciphertext c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.
2. Compute c← e0 + e1h.
3. Compute K ← L(e0, e1).
4. Return (c,K).

Decaps

- Input: the sparse private key (h0, h1) and the ciphertext c.
- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← ch0.
2. Compute {(e′0, e′1),⊥} ← decoder(s, h0, h1).
3. If ⊥ ← decoder(s, h0, h1) or |(e′0, e′1)| 6= t, output ⊥ and halt.
4. Else, compute K ← L(e′0, e

′
1) and return K.

1This was originally known as BIKE-2 in earlier versions of this document.
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We now show that this KEM is IND-CPA secure, which is at the basis of
the security for the final scheme. We start by recalling the definition of IND-CPA
security for a KEM, where we denote by K the domain of the exchanged symmetric
keys and by λ the security level.

Definition 7. A key-encapsulation mechanism is IND-CPA (passively) secure if,
for any polynomial-time adversary A, the advantage of A in the following game is
negligible.

Game IND-CPA
1: (sk, pk)← Gen(λ)
2: (c,K0)← Encaps(pk)

3: K1
$←− K

4: c∗ ← c
5: K∗ ← Kb

6: b′ ← A(pk, c∗,K∗)

We define the adversary’s advantage as AdvIND-CPA(A) = Pr[b′ = b]− 1/2.

Theorem 1. The KEM described above is IND-CPA secure in the Random Oracle
Model under the (2, 1)-QCCF and (2, 1)-QCSD assumptions.

Proof. To begin, note that we model the hash function L as a random oracle. We
will use a sequence of games with the goal of showing that an adversary distinguish-
ing one game from another can be exploited to break one or more of the problems
cited above in polynomial time (see Section 6.1 for definitions).

First let us instantiate the IND-CPA game for the underlying KEM. The game
will use the following randomness{

(h0, h1)
$←− R2 |h0| = |h1| = w/2 odd

(e0, e1)
$←− R2 |e0|+ |e1| = t

The output (sk, pk) of Gen(λ) will be sk = (h0, h1) for all variants and pk = h =
h1h

−1
0 . For both valid and random pk, the output (c,K) of Encaps(pk) will be

K = L(e0, e1) ∈ K = {0, 1}`K and c = e0 + e1h.

Let A be a probabilistic polynomial-time adversary playing the IND-CPA game
against our scheme, and consider the following games.
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Game G1: This corresponds to an honest run of the protocol, and is the same as
the original IND-CPA game. In particular, the simulator has access to all
keys and randomness.

Game G2: In this game, the goal is to forget the secret key, and to generate a
random public key. It is the same as the previous game where the honestly-
generated public key in step 1 is replaced by pk = h

$←− R, for |h| odd.
An adversary distinguishing between these two games is therefore able to
distinguish between a well-formed public key and a randomly-generated one
(of suitable parity). To distinguish G1 from G2 the adversary must in fact
distinguish h1h

−1
0 from a random invertible element of R. Thus, we have

that AdvG1(A) ≤ AdvG2(A) + Adv(2,1)−QCCF(A′) and therefore

AdvG1(A)−AdvG2(A) ≤ Adv(2,1)-QCCF(A′) where A′ is a polynomial-time
adversary for the underlying problem.

Game G3: Now, the simulator also picks a random ciphertext. Thus the game is
the same as G2, but we replace the ciphertext in step 4 by c∗ $←− R, for |c∗|
odd. An adversary distinguishing between these two games is therefore able
to distinguish between a well-formed ciphertext and a randomly-generated
one (of suitable parity). To distinguish G2 from G3 the adversary must
in fact, given h random in R of odd weight, be able to distinguish e0 +
e1h from a random element of R of identical parity. Thus, AdvG2(A) ≤
AdvG3(A)+Adv(2,1)−QCSD(A′′), whereA′′ is a polynomial-time adversary for
the underlying problem. It follows that, if an adversary is able to distinguish
game G2 from game G3, then it can solve one of the QCSD problems. Hence,
we have AdvG2(A)−AdvG3(A) ≤ Adv(2,1)-QCSD(A′′)

Note that at this point, the adversary receives only random values for public
key and ciphertext, and is called to distinguish between K0 and K1. Now, the
latter is generated uniformly at random, while the former is pseudorandom (since
L is modeled as a random oracle2, and therefore the adversary only has negligible
advantage, say ε. So in the end, we have:

AdvIND-CPA(A) ≤ Adv(2,1)-QCCF(A′) + Adv(2,1)-QCSD(A′′) + ε. (2)

This concludes the proof.

2To nitpick, one could simply pick L as any Key Derivation Function, however for
efficiency purposes it is simpler to consider it as a Random Oracle.
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We now proceed to present the hybrid encryption scheme constructed using the
KEM we just described. This is formally the PKE underlying the BIKE KEM, ob-
tained through the Fujisaki-Okamoto transformation. Once again, the parameters
{r, w, t, `} and the hash function L are obtained using the same Setup algorithm
given at the beginning of Section 2.

KeyGen

- Input: parameters {r, w, t, `}.
- Output: the sparse private key (h0, h1) and the dense public key h.

1. Generate (h0, h1)
$←R2 both of (odd) weight |h0| = |h1| = w/2.

2. Compute h← h1h
−1
0 .

3. Return (h0, h1) and h.

Encrypt

- Input: the dense public key h and the message m.
- Output: the ciphertext C.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.
2. Compute C = (c0, c1)← (e0 + e1h,m⊕ L(e0, e1)).
3. Return C.

Decrypt

- Input: the sparse private key (h0, h1) and the ciphertext C.
- Output: the message m or a failure symbol ⊥.

1. Compute the syndrome s← c0h0.
2. Compute {(e′0, e′1),⊥} ← decoder(s, h0, h1).
3. If ⊥ ← decoder(s, h0, h1) or |(e′0, e′1)| 6= t, output ⊥ and halt.
4. Else, compute m← c1 ⊕ L(e′0, e

′
1) and return m.

It is immediate to see that the hybrid PKE we just described is also IND-
CPA secure. This follows directly from the IND-CPA security of the KEM used to
construct it, which we have proved in Theorem 1.

34



B Proof of Proposition 1
Let us recall first the proposition

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover’s algorithm for finding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover’s attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

Proof. Following Zalka[23], the best way is to perform Grover’s algorithm sequen-
tially with the maximum allowed number of iterations in order not to go beyond
MAXDEPTH. Grover’s algorithm consists of iterations of the following procedure:

• Apply U : |0〉|0〉 →
∑

x∈{0,1}n
1

2n/2 |x〉|f(x)〉.

• Apply a phase flip on the second register to get
∑

x∈{0,1}n
1

2n/2 (−1)f(x)|x〉|f(x)〉.

• Apply U †.

If we perform I iterations of the above for I ≤ 1√
α
then the winning probability is

upper bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially
before measuring, and each iteration costs time Cf . At each iteration, we succeed
with probability αI2 and we need to repeat this procedure 1

αI2
times to get a result

with constant probability. From there, we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (3)

A similar reasoning performed on using Grover’s search on AES-N leads to a quan-
tum complexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (4)

The proposition follows by comparing (3) with (4).
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