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Changes in BIKE for Round 4

• Data-oblivious sampling technique: We have changed our approach for
sampling fixed-weight vectors to a data oblivious technique, which eliminates
the risk of certain side-channel attacks. This change does not lead to any
noticeable performance impact given the negligible contribution this step has
to the overall BIKE algorithms. New KATs have been generated.

Changes in BIKE for Round 3

• Single Variant: We have narrowed down the set of BIKE variants to a single
variant. The single variant is built from the old BIKE-2 with the algorithmic
flow adjusted to match the state-of-the-art semantically secure transform. The
parameters are chosen to target IND-CCA security.

• Spec Simplification: We have made a significant effort to simplify our spec-
ification document. Among other things, we have refactored the document
structure and moved most of the mathematical background to the Appendix.
The body of the document is now more focused on describing the core BIKE
techniques rather than recalling the required mathematical background. The
overall document continues to be self-content though.

• Recommended Decoder: The recommended decoder was changed to Black-
Gray-Flip (BGF). It features a secure and efficient fixed-number-of-steps defi-
nition, and enjoys a more refined DFR estimate aiming at IND-CCA security.
See Section 2.3.

• Decoding Failure Rate (DFR): We have extended the DFR discussion to
clarify what is the state-of-art on this topic. See Section 3.4.

• Parameter for NIST Security Level 5: In response to NIST request after
Round 2 selection, we have provided new BIKE parameters targeting security
level 5. See Section 2.6.

• New Hardware Design: We have extended our hardware design to imple-
ment all key generation, encapsulation and decapsulation procedures. This
work represents our fastest VHDL implementation of BIKE. See Section 5.4.

• Replace ParallelHash by normal hashing: We have replaced the Parallel-
Hash procedure by normal hashing (SHA384), leading to superior performance
for our reference implementation. See Section 2.5.
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1 Introduction
Detailed mathematical background, decoder availability and performance, security
assumptions, and design rationale are discussed later in the document. This sec-
tion contains basic material relative to the completeness and the soundness of the
specification.

1.1 Notation and Definition
Notation
F2: Binary finite field.
R: Cyclic polynomial ring F2[X]/(Xr − 1).
Hw: Private key space {(h0, h1) ∈ R2 | |h0| = |h1| = w/2}
Et: Error space {(e0, e1) ∈ R2 | |e0|+ |e1| = t}
|g|: Hamming weight of a binary polynomial g ∈ R.
u

$←U : Variable u is sampled uniformly at random from the set U .
⊕: exclusive or of two bits, componentwise with vectors

Parameters. The block size r (the code length n = 2r), the row weight w ≈
√
n

(w even and w/2 odd), and the error weight t ≈
√
n.

QC-MDPC Code. A Quasi-Cyclic Moderate Density Parity Check code of index
2, length n, and row weight w is defined as a pair of sparse parity polynomials
(h0, h1) ∈ Hw.

Decoder. Takes as input a syndrome s ∈ R and parity polynomials (h0, h1) ∈ Hw

and outputs a sparse vector (e0, e1) ∈ R2. With high probability, the decoder
verifies(

(e0, e1) ∈ R2 and |e0|+ |e1| ≤ t
)
⇒ (e0, e1) = decoder(e0h0 + e1h1, h0, h1).

1.2 Public-Key Encryption From QC-MDPC Codes

The McEliece scheme [28] can be instantiated with QC-MDPC codes [29]. It is out-
lined, using the equivalent Niederreiter scheme [30], in Table 1, where the plaintext
is represented by the sparse vector (e0, e1), and the ciphertext by its syndrome s.
The security of the scheme reduces to quasi-cyclic variants of hard problems from
coding theory [6, 1], taking the form of distinguishing problems as given in Table 2.
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Private Key: (h0, h1) ∈ Hw Encryption: (e0, e1) ∈ Et 7→ s = e0 + e1h ∈ R
Public Key: h = h1h

−1
0 ∈ R Decryption: s ∈ R 7→ decoder(sh0, h0, h1) ∈ Et

Table 1: QC-MDPC-McEliece: Niederreiter-like PKE from QC-MDPC codes

Key: distinguish h1h−10 from random, (h0, h1)
$←Hw

Message: distinguish (e0 + e1h, h) from random, ((e0, e1), h)
$←Et ×R

Table 2: Hard problem for the security of QC-MDPC-McEliece

2 Specification (2.B.1)

2.1 Setup
Input: Target security level λ.

Output: Parameters {r, w, t, `}, hash functions {H,K,L}, and decoder.
1. System Parameters. Select r, w, t, ` following the guidelines in C.3.1.

• r (block length): a prime number such that 2 is primitive modulo r.
• w (row weight): an even positive integer such that w/2 is odd.
• t (error weight): a positive integer.
• ` (shared secret size): a positive integer.

Define the message spaceM = {0, 1}` and the shared key space K = {0, 1}`.

2. Hash Functions. Select the functions H,K,L uniformly at random from the
set of functions with the following respective domains and ranges.

• H :M→ Et.
• K :M×R×M→ K.
• L : R2 →M

The functions are modeled as random oracles. A concrete instantiation of
{H,K,L} needs to be associated with the scheme.

3. Decoder. Select decoder, which takes as input s ∈ R and (h0, h1) ∈ Hw.
The call decoder(s, h0, h1) returns either (e0, e1) ∈ R2 such that e0h0+e1h1 =
s or the failure symbol ⊥. The decoding failure rate is defined as

DFR(decoder) = Pr[(e0, e1) 6= decoder(e0h0 + e1h1, h0, h1)]

when ((h0, h1), (e0, e1)) is drawn uniformly from Hw × Et.
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2.2 The BIKE Key Encapsulation Mechanism

KeyGen : () 7→ (h0, h1, σ), h

Output: (h0, h1, σ) ∈ Hw×M, h ∈ R
1: (h0, h1)

D←Hw . (1)

2: h← h1h
−1
0

3: σ $←M

Encaps : h 7→ K, c

Input: h ∈ R
Output: K ∈ K, c ∈ R×M
1: m $←M
2: (e0, e1)← H(m)
3: c← (e0 + e1h,m⊕ L(e0, e1))
4: K ← K(m, c)

Decaps : (h0, h1, σ), c 7→ K

Input: ((h0, h1), σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M
Output: K ∈ K
1: e′ ← decoder(c0h0, h0, h1) . e′ ∈ R2 ∪ {⊥}
2: m′ ← c1 ⊕ L(e′) . with the convention ⊥ = (0, 0)
3: if e′ = H(m′) then K ← K(m′, c) else K ← K(σ, c)

(1): D a distribution stemming from Algorithm 3, the constant weight sampler of §2.4

Table 3: The BIKE Key Encapsulation Mechanism

2.3 Decoder

The selected decoder is the Black-Gray-Flip (BGF) defined in [16]. It is specified in
Algorithm 1 and takes as inputs a vector s ∈ Fr2 and a matrix H ∈ Fr×n2 . The matrix
H = (H0 | H1) is built from two circulant blocks H0, H1 derived from (h0, h1) ∈ Hw

(see §A.1). The algorithm is defined for every set of system parameters (r, w, t)
(which also determines d = w/2 and n = 2r). It is characterized by three other
parameters. The first is NbIter, the number of iterations that it runs. The second is
τ , a threshold gap used to determined the size of the ’gray’ set of positions. The third
parameter is the threshold function (see below). Relevant values of NbIter, τ , and
of the threshold function must be specified for every parameter set. The algorithm
invokes two functions specified as follows:

• ctr(H, s, j). This function computes a quantity referred to as the counter (aka
the number of unsatisfied parity-checks) of j. It is the number of ’1’ (set bits)
that appear in the same position in the syndrome s and in the j-th column of
the matrix H.

3



Algorithm 1 Black-Gray-Flip (BGF)
Parameters: r, w, t, d = w/2, n = 2r ; NbIter, τ , threshold (see text for details)
Require: s ∈ Fr2 , H ∈ Fr×n2

1: e← 0n

2: for i = 1, . . . ,NbIter do
3: T ← threshold(|s+ eHᵀ| , i)
4: e, black, gray← BFIter(s+ eHᵀ, e, T,H)
5: if i = 1 then
6: e← BFMaskedIter(s+ eHᵀ, e, black, (d+ 1)/2 + 1, H)
7: e← BFMaskedIter(s+ eHᵀ, e, gray, (d+ 1)/2 + 1, H)

8: if s = eHᵀ then
9: return e

10: else
11: return ⊥

12: procedure BFIter(s, e, T,H)
13: for j = 0, . . . , n− 1 do
14: if ctr(H, s, j) ≥ T then
15: ej ← ej ⊕ 1
16: blackj ← 1
17: else if ctr(H, s, j) ≥ T − τ then
18: grayj ← 1

19: return e, black, gray

20: procedure BFMaskedIter(s, e,mask, T,H)
21: for j = 0, . . . , n− 1 do
22: if ctr(H, s, j) ≥ T then
23: ej ← ej ⊕maskj

24: return e

4



• threshold(S, i). This function is the threshold selection rule. It depends, in
general, on the syndrome weight S, the iteration number i, and on the system
parameters. This function is a parameter of the algorithm, it impacts the
decoding performance.

A note about BGF and IND-CCA security. The DFR of the BGF decoder has
been studied by means of simulations and extrapolations in [16]. These techniques
provide a strong indication that the DFR is (sufficiently) small with the recommended
parameters. This indication may be acceptable from a practical viewpoint, and could
be strengthened by further studies. However, at the moment, the current analysis
gives only an estimation of the DFR, and not a proven upper bound. Consequently,
the BIKE instantiation with the BGF decoder does not make a formal claim for
IND-CCA security, although by any practical considerations, this is probably the
case.

2.4 Pseudorandom Bits Generation

KeyGen, Encaps, and Decaps involve three types of pseudorandom bits stream gen-
eration.

• With no constraints on the output (Algorithm 2).

• With a specific weight w (Algorithm 3).

Remark 1. Algorithm 3 generates a list of w distinct positions between 0 and r− 1.
This list is also viewed, interchangeably, as the support of a string U of r bits (where
|U | = w).

Contrary to the previous version of BIKE’s constant weight sampler, Algorithm 3
never rejects data and is thus immune to the attack [19]. It is shown in [37] that the
returned subset is almost uniform among the subset of {0, . . . , r − 1} of cardinality
w, close enough to uniform to have no effective impact on security (for more details
we refer the reader to Sections 3 and 4 of [37]).

Key Generation. The secret key (h0, h1) in Table 3 is sampled according to a
distribution D over Hw. To avoid code duplication this distribution can reuse Al-
gorithm 3, used to implement the hash function H, with input (len,wt) = (r, w/2).
Two calls are required, for h0 then h1. The corresponding distribution is biased,
however the impact of this bias on security is hardly measurable as shown in §C.4.
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SHAKE256 based pseudorandom bits generation. The building block for
these algorithms is SHAKE256. Suppose that seed is a 256-bit seed and µ is a positive
integer. Denote the µ blocks (of 1088 bits each) output of SHAKE256 with that seed
by SHAKE256(seed, µ). Let ν be a positive integer. Then, the least significant ν bits
of SHAKE256(seed, ceil(ν/1344)) are denoted by SHAKE256-Stream(seed, ν).

Algorithm 2 GenPseudoRand(seed, len)
Require: seed (32 bytes)
1: return SHAKE256-Stream (seed, len)

Algorithm 3 WSHAKE256-PRF(seed, len, wt)
Require: seed (32 bytes), len, wt
Ensure: A list (wlist) of wt distinct elements in {0, . . . , len− 1}.
1: wlist← () . empty list
2: s0, . . . , swt−1 ← SHAKE256-Stream(seed, 32 · wt)

. parse as a sequence of wt non negative 32-bits integers
3: for i = (wt− 1), . . . , 1, 0 do . i decreasing from wt− 1 to 0
4: pos← i+ b(len− i)si/232c
5: wlist← wlist, (pos ∈ wlist) ? i : pos
6: return wlist

6



2.5 The Functions H,K,L

The functions H,K,L are modeled as random oracles. Their concrete instantiation
is the following.

• H is instantiated as a pseudorandom expansion of a seed of length ` bits that
is input to the function. It is generated by invoking Algorithm 3 with the
appropriate parameters.

• K is instantiated as the ` = 256 least significant bits of the standard SHA384
hash digest of the input. The notation K(m,C) where C = (c0, c1) (and
similarly, K(m′, C)) refers to hashing an input of {0, 1}`+r+` bits that is the
concatenation of m, c0 and c1. Here, the bits of m are consumed (by SHA384)
first, then the bits of c0, and then the bits of c1.

• L is instantiated as the ` = 256 least significant bits of the standard SHA384
hash digest of the input. The notation L(e0, e1) (and similarly, L(e′0, e

′
1) ) refers

to hashing an input of {0, 1}r+r bits that is the concatenation of e0 and e1 Here,
the bits of e0 are consumed (by SHA384) first, and then then the bits of e1.

2.6 BIKE Parameters

The NIST call for proposals indicates several security categories that are related to
the hardness of a key search attack on a block cipher, like AES. BIKE targets security
levels 1, 3, and 5, corresponding to the security of AES-128, AES-192, and AES-256,
respectively.

For all security levels, the key length parameter is fixed to ` = 256. A parameter
set for BIKE is a triple (r, w, t). The suggested parameters are summarized in Table 4.

Security r w t

Level 1 12,323 142 134
Level 3 24,659 206 199
Level 5 40,973 274 264

DFR†

2−128

2−192

2−256

Table 4: Suggested BIKE Parameters.

† The DFR in Table 4 is estimated for the BGF decoder of §2.3 with the following additional
parameters (note that here, threshold is independent of the iteration number i):
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• For Level 1: NbIter = 5, τ = 3,
threshold(S, i) = max(b0.0069722 · S + 13.530c, 36)

• For Level 3: NbIter = 5, τ = 3,
threshold(S, i) = max(b0.005265 · S + 15.2588c, 52)

• For Level 5: NbIter = 5, τ = 3,
threshold(S, i) = max(b0.00402312 · S + 17.8785c, 69)

3 The Security of BIKE (2.B.4/2.B.5)
This section discusses various security aspects relative to BIKE. It is assumed here
that the instantiation of H,K,L is an acceptable approximation for random oracles.

3.1 Claims

• BIKE is proven IND-CPA secure under assumptions 1 and 2

• BIKE is proven IND-CCA secure under assumptions 1, 2, and 3

Assumption 1. Hardness of qcsdr,t

Assumption 2. Hardness of qccfr,w

Assumption 3. Correctness of decoder

where r, w, t and decoder are parameters defined in the system setup §2.
The first two assumptions relate to standard hard problems from coding theory,

respectively decoding and codeword finding in an arbitrary quasi-cyclic code, see
§B.1.1.

Correctness in the third assumption refers to [23] where a KEM is δ-correct if the
decapsulation fails (i.e. disagrees with encapsulation) with probability at most δ on
average over all keys and messages. Similarly, a decoder will be δ-correct if its failure
rate is at most δ on average when the input is drawn uniformly. This matches the
DFR definition in the setup §2.

3.2 Quantum Adversary

The proof framework of [23] is also valid in the QROM. Tightness was later improved
in [35]. In view of those works, and following [24] and Proposition 1 of §B.2.2, it
appeared safe to use λ = 128, 192, 256 bits of classical security to meet respectively
levels 1, 3, and 5 of NIST target security.
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3.3 Known Attacks

Known attacks are detailed in appendix §B. The first two assumptions relate to hard
computational problems from coding theory. Parameters are selected so that the
workfactor of best known solvers for those problems, variants of Information Set
Decoding, are above the required security level. See §B.2.

The third assumption relates to the average decoding failure rate (DFR), as
defined in §2, of the chosen decoder. The reaction attack [20] will allow the secret
key recovery if an attacker is able to discover a few decoding failures for the same
key. Specifically, if the DFR is 2−S then an attacker may recover the secret after an
average computational effort of order 2S. See §B.3.

It can be observed that the formal security in the classical (i.e. non quantum)
setting, stated in Theorem 3, relates tightly to the practical security stemming from
the above attacks. If the parameters are chosen to resist to the decoding attacks and
to the reaction attack, they also match the requirements for formal security.

Parameter Selection: To reach λ bits of (classical) IND-CCA security, the pa-
rameters are r, w, t, `, and decoder chosen in the setup such that:

1. qccfr,w offers λ bits of security

2. qcsdr,t offers λ bits of security

3. |M| = 2` ≥ 2λ

4. DFR(decoder) ≤ 2−λ.

The parameters are chosen in the following order:

• Choosing ` ≥ λ is straightforward, in practice ` = 256 for all parameter sets.

• The computational problems guide the selection of w and t based on the best
known solvers, as discussed in §B.2. The block size r has a very limited influence
on those solvers’ complexity, see §A.2.4.

• Finally, with w and t fixed, the block length r is selected by simulation and
extrapolation so that the DFR estimate is low enough, as discussed in §A.2.4.

There are additional requirements for the parameters selection (see §A.1.2): 1) the
block size is chosen such that 2 is primitive mod r to avoid any undesirable structure
in the polynomial ring R = F2[X]/(Xr − 1), and 2) the row weight w is chosen even
and such that |h0| = |h1| = w/2 is odd to ensure that h0 is always invertible in R.
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3.4 More About Low DFR

The failure assumption relates to the decoder (family) used in the system speci-
fication. An important fact which derives from the security reduction is that the
assumption 3 above captures all IND-CCA issues related to this particular decoder.
It is known from [20] that a high DFR leads to a key attack, and from the reduction
that a low DFR is enough to resist, not only to the previously mentioned attack, but
to any attack that would not also solve a hard code-based computational problem.

The question is now, what does it take to prove a low DFR? The current state-of-
art looks more like an estimation: simulation data, with fixed (w, t) and varying block
size r, is extrapolated to determine an upper bound for a suitably secure block size.
This extrapolation is consistent with known results, asymptotic [43] and Markovian
model of bit flipping [39]. Those results predict the typical behaviour of the decoder,
but may not take into account specific structures that could hinder decoding. Those
are of two kinds, weak keys, decoding failures which are caused by structured keys,
and error floors, decoding failures which are caused by structured errors. Note that
in both case the question is not about existence, those objects do exist. The question
is whether their contribution to the average DFR dominates, defeating the analysis
which only consider the typical case.

Weak Keys. Some weak keys were exhibited in [14], they have a low density, but
have a strong impact on decoding. Those weak keys were generalized and studied
further [41]. However, there are strong indications that they have a negligible impact
on the average DFR [45].

Error Floors. Low density parity check codes decoding failure rate suffer from
a phenomenon known as error floor: when the error rate decreases, the waterfall
shape curve of the DFR logarithm eventually turns into a plateau. This error floor
effect is due to codewords and near-codewords. A near-codeword is a word of low
Hamming weight whose syndrome also has a low Hamming weight. Error patterns
which are close to a codeword or a near-codeword are prone to decoding failure.
In [40] the effect of codewords on error floors is shown to be negligible. There
exists near-codewords for QC-MDPC. For instance, in the polynomial setting, see
§A.1.2, relatively to the QC-MDPC parity check matrix (h0, h1), the syndrome of
the word (hᵀ0, 0) is h20, and both the word and syndrome have weight w/2. Those
near-codewords and their impact on decoding failure have been studied [45, 3], but
at this moment it seems difficult to conclude whether or not the contribution of error
patterns close to identified near-codewords is dominant in the error floor region of
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the DFR, and the low DFR assumption remains partly heuristic.

3.5 Practical security considerations for using BIKE

• An instantiation of BIKE can use different decoders without affecting inter-
operability. The decoder must be implementable in constant-time to avoid
side-channel attacks, and its DFR must be low enough to match the security
requirement.

• BIKE’s design fits well with ephemeral keys. The party that initiates a session
needs to: a) Generate a fresh private/public key pair for every session; b) Refuse
to decapsulate more than one incoming ciphertext (presumably the result of
a legitimate encapsulation) with that key. The IND-CPA security property
suffices for this type of usage.

• BIKE can also support static keys, i.e. a long-term use of a single key. This
usage requires the IND-CCA security property and therefore a low enough DFR
for the specified decoder. However, this usage model implies the loss of forward
secrecy.

4 Design Rationale and Considerations (2.B.6)
This section explains briefly the design rationale and some considerations about the
specification of BIKE, by answering a sequence of questions that may occur.

4.1 What is BIKE and how should it be used?

4.1.1 What is BIKE in one sentence?

BIKE is a Key Encapsulation Mechanism (KEM) based on Quasi-Cyclic Moderate
Density Parity-Check (QC-MDPC) codes, that is proposed for the Post-Quantum
Cryptography (PQC) Standardization project of the National Institute of Standards
and Technology (NIST).

4.1.2 How many versions of BIKE are proposed?

There is only one version of BIKE, defined with three parameter sets (r, w, t): one
for Security Level 1, one for Level 3 and one for Level 5. Some additional parameters
are associated with the specific BGF decoder that is associated with the proposal.
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4.1.3 How should BIKE be used?

BIKE is primarily designed to be used in synchronous communication protocols (e.g.
TLS) with ephemeral keys, i.e. with a fresh public/private key pair for every key
exchange session. In particular, decapsulation with a given private key should be
allowed only once. Such usage model provides forward secrecy. A KEM with IND-
CPA security is sufficient for such usage.

Key reuse or adapting BIKE to asynchronous protocols (e.g. email) require to
secure long term static keys. Those usage models are possible but no longer provides
forward secrecy and require IND-CCA security. Note that they are not compliant
with BIKE’s current specification.

4.1.4 Under which condition is BIKE IND-CPA?

IND-CPA security is guarantied if the parameters are chosen so that the underlying
generic quasi-cyclic code-based computational problems are hard enough. Those
problems have been studied for a while and are notoriously hard. Best known solvers
are well understood and easy to analyze. Proposed parameters for BIKE tightly
match those analyses.

4.1.5 Under which condition is BIKE IND-CCA?

To reach IND-CCA security, BIKE must be instantiated with a decoder that has a
Decoding Failure Rate (DFR) of the required magnitude, see §C and [17]. The BGF
decoder that is associated with BIKE targets a DFR of 2−128, 2−192 and 2−256 for the
respective levels of security. This is indeed the estimated DFR. The estimation sug-
gests a high confidence level through a methodology that uses extensive simulations
and extrapolations models stemming from asymptotic analyses [43, 39].

4.1.6 What happens if a key pair is inadvertently used twice?

Formally, IND-CCA security, that is a low enough DFR, is required to offer a guar-
anty in case of key reuse. In that case the key may be reused indefinitely. Else,
existing attacks [20] require multiple decoding failures to succeed, and even with
amplification techniques [31] there is no plausible scenario in which a few reuse of
the same key create an effective threat.
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4.2 Interoperability

4.2.1 Can BIKE be used with a different decoder?

Yes, but caution is needed. First, a protocol that uses BIKE should use ephemeral
keys. The choice of a different decoder (or the same decoder with different parame-
ters) does not affect interoperability. Such a choice could potentially speed up Decaps
at the expense of increasing the (failure) probability that a session does not end up
with a successfully exchanged shared key. As long as this probability is deemed tol-
erable in the overall system context, applications are free to select a decoder as an
implementation choice. This means that decoders can be defined, tuned, and opti-
mized for specific platforms with specific constraints. If an instantiation of BIKE
targets IND-CCA security, it must choose a decoder with a (proven) sufficiently low
DFR. If BIKE is selected for standardization, NIST could specify a list of allowable
decoders, or requirements for allowable decoders.

4.2.2 Does the decoder have to check for a decoding failure?

There are equivalent ways to check the set of logical conditions. A decoder decoder
can be defined to always return an error vector (e′0, e

′
1) and no other indication. Then,

decoder succeeded if and only if e′0h0 + e′1h1 = s and |(e′0, e′1)| = t, and otherwise
it failed. Checking these conditions is moved outside the scope of decoder, and
becomes part of Decaps.

4.2.3 Can BIKE be used with another pseudorandom generator?

Yes, but some caution is needed. An alternative pseudorandom generation algorithm
can be acceptable if it meets the security requirements (indistinguishability from
random strings). An acceptable alternative does not affect interoperability.

If BIKE is selected for standardization, NIST could specify a list of allowable pseu-
dorandom generation algorithms, or requirements for allowable algorithms should be
specified.

4.2.4 Can BIKE be used with a smaller block size (r)?

In theory, yes: this could have been specified as an option, but a value of r affects
interoperability. For the sake of simplicity, BIKE is specified with one choice only.
The rationale behind this choice is explained in §4.3.7.
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4.3 Design rationale

4.3.1 How is BIKE constructed?

BIKE is built upon the Niederreiter framework, with some tweaks. It also applies the
implicit-rejection version of Fujisaki-Okamoto transformation (FO6⊥, as described in
[23]) for converting a δ-correct PKE into an IND-CCA KEM.

4.3.2 What happened to the previous versions of BIKE?

The previous iteration of the proposal included six variants, namely BIKE-1, BIKE-2,
BIKE-3, BIKE-1-CCA, BIKE-2-CCA and BIKE-3-CCA. Following NIST’s sugges-
tion to reduce the number of options in the proposal, the designers of BIKE decided
to consolidate BIKE to one version only, namely BIKE-2-CCA. It is now called
simply BIKE. The previous versions remain available on the website1.

4.3.3 Is BIKE the same as the previously-known BIKE-2-CCA?

Not exactly, the round 2 specification (v3) was modified in v3.1 in an attempt to
conform with the FO6⊥ construction of [23]. Further modifications, the shared secret
derivation and the domain separation of the hash functions H,K,L, were made
in [17] to match precisely the FO6⊥ construction of [23] and obtain the IND-CCA
security proof.

4.3.4 Why keep the Fujisaki-Okamoto transformation?

This is a design choice that targets simplicity. Indeed, it is possible to build a
version of BIKE that does not apply the FO6⊥ transformation and targets only IND-
CPA security. However, the difference in the performance is negligible (see [14]) and
does not justify the complication of maintaining such a design as a separate version.

4.3.5 Why is BIKE designed over the Niederreiter framework?

The design of BIKE is based on the Niederreiter framework because it requires
only half the communication bandwidth compared to an analogous design over the
McEliece framework. The trade-off associated with this choice is the cost of the
(polynomial) inversion required for the key generation.

1https://bikesuite.org
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4.3.6 How can BIKE support polynomial inversion in KeyGen?

The cost of polynomial inversion was considered too prohibitive until recently (es-
pecially with ephemeral keys usage), but the fast polynomial inversion algorithm
proposed in [15] changed the picture. This algorithm is similar to the Itoh-Tsuji
inversion algorithm, where the essence is that computing a2k is efficient. The Itoh-
Tsuji algorithm inverts an element of F2k , where the field elements are represented
in normal basis. The new algorithm generalizes it to the ring of polynomials used in
BIKE (and other QC-MDPC schemes): F2[x]/〈(x− 1)h〉 with irreducible h. Details
are provided in [15]. This algorithm is implemented in constant-time and used in the
Additional Software Implementation Code Package (see Section 5.3).

4.3.7 How was the block length r chosen?

The block length r determines the sizes of the public key, the ciphertext, and signifi-
cantly affects the overall latency and the communication bandwidth. By the design of
BIKE, r needs to be prime and satisfy the requirement that (Xr−1)/(X−1) ∈ F2[X]
is irreducible. It needs to be sufficiently large to satisfy (together with the choice
of w and t) the scheme’s security target and the DFR target for the decoder. In
addition, [15] suggests that the inversion algorithm is especially efficient if the Ham-
ming weight of (r − 2), is small. Indeed, for r = 12323, |(r − 2)| = 4, for r = 24659
|(r − 2)| = 5, and for r = 40973, |(r − 2)| = 5.

4.3.8 How were the functions H,K,L designed?

BIKE specification models H,K,L as random oracles. The concrete realization of
K and L relies on the standard SHA3-384 hash function that has sufficient capacity
in its compression function, and is accepted by NIST for this purpose. The function
H uses 256 bits as a key, and SHAKE256 based pseudorandom expansion.

4.3.9 How was the pseudorandom generation determined?

The pseudorandom generation uses a SHAKE256 implementation with a 256-bit seed.
Therefore, BIKE only relies on one single symmetric cryptographic primitive, i.e.,
the sponge-construction of KECCAK. This design choice is especially beneficial for
hardware devices to reduce the overall footprint by instantiating only one symmetric
primitive.
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5 BIKE Performance (2.B.2)
This section discusses the essential characteristics and performance of BIKE.

5.1 Memory and Communication Bandwidth

Table 5 summarizes the minimum memory requirements for BIKE.

Quantity Size Level 1 Level 3 Level 5

Private key `+ w · dlog2(r)e 2, 244 3, 346 4, 640

Public key r 12, 323 24, 659 40, 973

Ciphertext r + ` 12, 579 24, 915 41, 229

Table 5: Private Key, Public Key and Ciphertext sizes (in bits).

Remark 2. The private key consists of the vectors (h0, h1) ∈ R with |h0| = |h1| =
w/2 and (σ). Both h0 and h1 can be represented by r bits. Alternatively, a more
compact representation is listing the w/2 positions of the set bits. This listing yields
a (w

2
· dlog2(r)e)-bits representation. Therefore, the size for this part of the private

key is (w · dlog2(r)e)-bits. Since dlog2(r)e < 16 for the proposed parameter sets, an
implementation may prefer (for simplicity) to store these vectors as a sequence of w
16-bits elements. The second part of the private key, (σ), requires ` bits of storage.
In total, BIKE private keys can be stored in a container of (` + w · dlog2(r)e) bits.
Applications may choose to explore the possibility of generating the private key on
the fly, from a (secured) seed to obtain a favorable memory vs. latency trade-off.

Table 6 shows the communication bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. h r 12, 323 24, 659 40, 973

Resp. → Init. C r + ` 12, 579 24, 915 41, 229

Table 6: BIKE communication bandwidth (in bits).
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5.2 Reference Implementation

The reference implementation of BIKE is available on BIKE’s official website2. It
is a pure C implementation intended to provide readability and help researchers get
familiarized with the BIKE algorithms. It is not designed to run in constant-time, as
required for real-world implementation to offer side-channel resistance. For real-world
performance characterization, the reader is referred to the Additional Implementation
numbers described in §5.3, which is side-channel protected and leverages efficient
platform instruction sets.

5.3 Additional Software Implementation

The Additional Software Implementation Code Package for BIKE was developed
by Nir Drucker, Shay Gueron, and Dusan Kostic. It is maintained in a github
repository3. The package includes implementations for several CPU architectures.
In particular, it can be compiled for a 64-bit ARM and for x86 processors. ARM
architectures are supported by a fully portable implementation written in C. When
the code is compiled for x86 processors, the resulting binary contains the following
implementations:

• Fully portable.

• Optimized for AVX2 and AVX512 instruction sets.

• Optimized for CPUs that support PCLMULQDQ, and the latest Intel
vector-PCLMULQDQ instruction.

When the package is used on an x86 CPU, it automatically (in runtime) detects
the CPU capabilities and runs the fastest available code path, based on the detected
capabilities. The fully portable version, which is built by default, requires OpenSSL.
The library can also be compiled in a "stand-alone" mode, without OpenSSL, but
only for a processor that supports AES-NI and AVX instructions.

The package includes testing and it uses the KAT generation utilities provided
by NIST. The code is “stand-alone”, i.e., it does not depend on external libraries.
All the functionalities available in the package are implemented in constant-time,
which means that: a) No branch depends on a secret piece of information; b) All the
memory access patters are independent of secret information.

2https://bikesuite.org/reference.html
3https://github.com/awslabs/bike-kem

17

https://bikesuite.org/reference.html
https://github.com/awslabs/bike-kem


Performance benchmarking details. The performance is reported here in pro-
cessor cycles, and reflects the performance per single core. The measurements
methodology follows the description in [13].

The benchmarking platform. The platforms used in the experiments were equipped
with Intel R©Xeon R©Platinum 8175M CPU @ 2.50GHz, one with AVX512 and
vector-PCLMULQDQ instruction support, and another with AVX512 support only.
The Intel R© Turbo Boost Technology was turned off for the experiments in order to
force a fixed frequency and consistently measure performance in processor cycles.

OS and compilation. The code was compiled with clang (version 10.0.0) in 64-bit
mode and ran on a Linux OS (Ubuntu 20.04).

Performance numbers

Table 7: BIKE Level-1, r = 12323, w = 142, t = 134. Decoder BGF with 5 iterations. Performance
in 103 cycles.

AVX512 Vector-PCLMULQDQ
KeyGen 589 366
Encaps 97 74
Decaps 1,135 1,177

Table 8: BIKE Level-3, r = 24659, w = 206, t = 199. Decoder BGF with 5 iterations. Performance
in 103 cycles.

AVX512 Vector-PCLMULQDQ
KeyGen 1,823 1,049
Encaps 223 164
Decaps 3,887 3,512

Remark 3. A meaningful measure for the efficiency of the KEM, in the case where
it is used with ephemeral keys is the cumulative latency of KeyGen and Decaps. The
reason is that the communicating party that initiates the exchange executes KeyGen
subsequently executes Decaps. The numbers reported in Tables 7 and 8 indicate that
KeyGen is significantly faster than Decaps on modern platforms with AVX512 sup-
port, and even more so with the newer vector-PCLMULQDQ instruction.

18



Table 9: Implementation results of the united BIKE hardware core for Level 1 (r = 12 323).

Utilization Performance

Logic Memory Area Frequency Key Gen Encaps Decaps

Design LUT DSP FF BRAM Slices MHz cycles† µs cycles† µs cycles† µs

Light weight 12 319 7 3 896 9 3 777 121 463 3 797 54 443 841 6 896
Trade-off 19 607 9 5 008 17 5 617 100 187 1 870 28 280 421 4 210
High speed 25 549 13 5 462 34 7 332 113 190 1 672 15 132 215 1 892

pke Results are only for the PKE and not for the KEM.
† in thousand.

5.4 Hardware Implementation

The Hardware Implementation Code for BIKE was developed by Jan Richter-
Brockmann, Ming-Shing Chen, Santosh Ghosh and Tim Güneysu and has been
presented in [33]. Compared to the first hardware design of BIKE [34], the lat-
est hardware implementation uses a more efficient multiplier and faster inversion
module. Additionally, the revised design implements a united hardware core allow-
ing to perform the key generation, encapsulation, and decapsulation. All random
oracles are already based on KECCAK.
All the hardware files are published on the BIKE website4.

Implementation Results The implementation results are summarized in Table 9
including hardware utilization and timing behavior. All results were generated for
an Artix-7 FPGA (xc7a200). The exponentiation required for the key generation is
accomplished by an algorithm which is based on the extended Euclidean algorithm
[8]. The decapsulation is performed by a hardware implementation of the BGF
decoder. By instantiating multiple UPC equation counter in parallel, the decoding
can be highly accelerated. More details can be found in [34, 33]. Note that the
implementations of the random oracles are not updated to prevent the latest timing
attacks presented in [19] yet.

4https://bikesuite.org/
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6 Known Answer Tests – KAT (2.B.3)

6.1 KAT for BIKE

The KAT files of BIKE are available in:

• req file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level1_3114.req

• rsp file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level1_3114.rsp

• req file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level3_6198.req

• rsp file: KAT/INDCPA/BIKE/PQCkemKAT_BIKE1-Level3_6198.rsp
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A Mathematical Background

A.1 QC-MDPC Codes

Definition 1 (Linear codes). A binary (n, k)-linear code C of length n dimension k
and co-dimension r = (n− k) is a k-dimensional vector subspace of Fn2 .

Definition 2 (Generator and Parity-Check Matrices). A matrix G ∈ Fk×n2 is called
a generator matrix of a binary (n, k)-linear code C if C = {mG | m ∈ Fk2 }. A matrix
H ∈ F(n−k)×n

2 is called a parity-check matrix of C if C = {c ∈ Fn2 | cH
ᵀ = 0}.

Definition 3 (Codeword and Syndrome). A codeword c ∈ C of a vector m ∈ F(n−r)
2

is c = mG. A syndrome s ∈ Fr2 of a vector e ∈ Fn2 is s = eHᵀ.

A.1.1 Circulant Matrices and Quasi-Cyclic Codes

A binary circulant matrix is a square matrix where each row is the rotation of one
element to the right of the preceding row. It is completely defined by its first row.
A block-circulant matrix is formed of circulant square blocks of identical size. The
size of the circulant blocks is called the order. The index of a block-circulant matrix
is the number of circulant blocks in a row.

Definition 4 (Quasi-Cyclic Codes). A (binary) quasi-cyclic (QC) code of index n0

and order r is a linear code which admits as generator matrix a block-circulant matrix
of order r and index n0. A (n0, k0)-QC code is a quasi-cyclic code of index n0, length
n0r and dimension k0r.

A.1.2 Circulant Matrices as a Polynomial Ring

There exists a natural ring isomorphism, denoted by ϕ, between the binary r × r
circulant matrices and the quotient polynomial ring R = F2[X]/(Xr − 1). The
circulant matrix A whose first row is (a0, . . . , ar−1) is mapped to the polynomial
ϕ(A) = a0 + a1X + · · · + ar−1X

r−1. This allows to view all matrix operations as
polynomial operations. For every a = a0 +a1X+a2X

2 + · · ·+ar−1X
r−1 in R, define

aᵀ = a0 + ar−1X + · · ·+ a1X
r−1. This ensures ϕ(Aᵀ) = ϕ(A)

ᵀ.

The mapping ϕ can be extended to any binary vector of Fr2 . For all v =
(v0, v1, . . . , vr−1), set ϕ(v) = v0 + v1X + · · · + vr−1X

r−1. It is easy to see that
ϕ(vA) = ϕ(v)ϕ(A) and ϕ(vAᵀ) = ϕ(v)ϕ(A)

ᵀ.
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Factors of (Xr − 1). If r is even the scheme is subject to the squaring attack [25].
If r is divisible by 2`, the attack can be repeated ` times and can reduce the security
exponent. It is best to choose r odd, or even prime to thwart this attack. More
generally, a good precaution is to choose r such that (Xr− 1) = (X − 1)f(X) where
f(X) is an irreducible polynomial in F2[X] as this eliminates any potential structure
in R = F2[X]/(Xr − 1). This happens when 2 is primitive modulo r.

Invertible Elements. An interesting side effect of choosing r such that 2 is prim-
itive modulo r is that all elements of R of odd weight are invertible in R.

Block-Circulant Matrices. The block-circulant generator matrix of an (n0, k0)-
QC code can be represented as a k0 × n0 matrix over R. Each circulant block being
represented by its image by ϕ. Similarly any parity check matrix can be viewed as
an (n0 − k0)× n0 matrix over R. Respectively

G =

 g0,0 · · · g0,n0−1
...

...
gk0−1,0 · · · gk0−1,n0−1

 , H =

 h0,0 · · · h0,n0−1
...

...
hn0−k0−1,0 · · · hn0−k0−1,n0−1


with all gi,j and hi,j in R. In all respects, a binary (n0, k0)-QC code can be viewed
as an [n0, k0] code over the ring R = F2[X]/(Xr − 1). For instance the (2, 1) block-
circulant matrix G = (G0 | G1) is represented by the 1 × 2 matrix (g0, g1) over R
where g0 and g1 are the images of G0 and G1 by ϕ (i.e. the first row of G0 and G1).

A.1.3 Definition of QC-MDPC Codes

A binary MDPC (Moderate-Density Parity-Check) code is a binary linear code
which admits a somewhat sparse parity check matrix with a typical density of order
O(
√
n). Such a matrix allows the use of iterative decoders similar to those used for

LDPC (Low-Density Parity-Check) codes [18], widely deployed for error correction
in telecommunication. QC-MDPC codes are formally defined as follows.

Definition 5 (QC-MDPC code). An (n0, k0, r, w)-QC-MDPC code is an (n0, k0)
quasi-cyclic code of length n = n0r, dimension k = k0r, order r (and thus index n0)
admitting a parity-check matrix with constant row weight w = O(

√
n).

Gallager’s bit flipping decoding [18] allows the efficient decoding of up to t =
O(
√
n) errors with high probability.
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Sparse Polynomials for BIKE. The scheme makes use of (2, 1)-QC codes. Such
codes are subspaces of R2. The private key (h0, h1) ∈ Hw as in §1.2 defines the code

C = {(fh1, fh0) | f ∈ R} = {(f0, f1) ∈ R2 | f0h0 + f1h1 = 0}

with generator and parity check matrices (in R1×2) respectively

G =
(
h1 h0

)
and H =

(
hᵀ0 hᵀ1

)
.

The corresponding binary matrices, as in Algorithm 1 for instance, are obtained by
expanding the polynomials into circulant blocks.

A.2 Decoding QC-MDPC Codes

A.2.1 Decoding Algorithm for QC-MDPC Codes

The decoding of MDPC codes can be achieved, as for LDPC codes, with iterative
decoders [18] and in particular with the (hard decision) bit flipping algorithm. Using
floating point soft decision decoding would improve the decoding performance [4], but
would also complexify the logic and the arithmetic, making the scheme less suitable
for hardware and embedded device implementations, which is one of its interesting
features [22]. Bit flipping decoding for QC-MDPC was suggested with the original
design [29]. The decoding was later improved by a better threshold selection [9, 10],
then by emulating soft decoding with the gray regions in the “One-Round” decoder of
the round 1 BIKE proposal. Soft decision can also be emulated by giving a variable
“time to live” to every flip in the decoding process [38, 40], this results in the Backflip
decoder proposed for BIKE round 2. The Backflip decoder has a very low DFR but
is not suitable for constant time implementation as shown in [14]. The latter work
also shows that fine-tuned Black-Gray decoder is a better alternative (see §A.2.3) for
a secure constant-time implementation.

A.2.2 Decoding Algorithm for BIKE

The decoding algorithm (decoder) is a critical element of the decapsulation algorithm
(Decaps) of BIKE. Its purpose is to find the unique solution of a decoding problem.
During a key exchange session, the initiating party executes KeyGen and sends the
public key to the responding party that is expected to send back some ciphertext.
Subsequently, the initiating party executes Decaps, which, along with other steps
specified in §2.2, invokes the decoding algorithm.
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The decoder needs to be designed with the following targets: a) It has a suffi-
ciently low DFR that satisfies the security requirements of the usage of the KEM;
b) It runs a fixed number of steps; c) Its performance on the target platform is
acceptable, and desirably high.

A.2.3 Black-Gray Decoding

The authors of [14] discussed the importance of defining a decoder as an algorithm
that runs a fixed number of steps (rather than a maximal number of steps). Such
a definition also makes the algorithm implementable in constant-time, which is a
required property from a cryptographic primitive. Of course, a real application
needs to actually use a concrete constant-time implementation. In addition, [14] also
identified the Black-Gray decoder as providing a favorable trade-off between: a) the
number of steps; b) the estimated resulting DFR; c) the performance of a constant-
time implementation. After a standard bit flipping iteration the Black-Gray decoder
makes use, with several possible tuning, of two features introduced in the One-Round
decoder of BIKE’s first round proposal: 1) a check of positions that were just flipped
(black), then 2) a check of positions that were close but below the threshold (gray).
The subsequent publication [16] by the same authors defined several variants of the
Black-Gray decoder, and studied the resulting trade-offs. One variant is the Black-
Gray-Flip (BGF) decoder that starts with one Black-Gray iteration and continues
with several Bit-Flipping iterations. It was identified in [16] as the most efficient
variant, at least for the studied platforms (see Algorithm 1 in [16]). BIKE uses
the BGF decoder with tuned threshold functions that are based on fresh extensive
simulations.

Threshold Selection Rule threshold(S, i). The rule that is currently used de-
rives from BIKE Round 1. In practice, for each security level it is given as an affine
function of the syndrome weight. The numerical values are given in Section 2.3 for
Level 1, 3, and 5. The coefficients of the current affine functions depend on the
system parameters w and t, but not on r (see [45] for a comprehensive discussion).
The current rule does not depend on the iteration number i either. Other strategies,
depending on i and r are possible. Experiments indicate that those more elabo-
rated strategies do not perform better (for the BGF decoder). Our simulations and
estimated DFR claims are based on the rules given in the specification.
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A.2.4 Estimating the DFR for High Block Size

The Low Impact of Block Size on Computational Assumptions. The block
size r must be chosen large enough to allow efficient decoding. In practice one must
choose r = Ω(wt). The higher r the lower the DFR. On the other hand, the best
known attacks for codes of rate 1/2 as here, are of order 2t(1+o(1)) or 2w(1+o(1)). This is
corrected by a factor polynomial in r which is very small in practice. An interesting
consequence is that if w and t are fixed, a moderate modification of r (say plus or
minus 50%) will not significantly affect the resistance against the best known key
and message attacks. This will simplify the extrapolation methodology described in
the next paragraph.

Estimating the DFR by Extrapolation. Low DFR, e.g., 2−128, as required
for CCA security, cannot be directly estimated by simulation. Instead, simulations
are combined with extrapolations, as described next. First, the DFR is measured for
smaller block sizes r, for which simulations are meaningful (and assumed to provide
a reliable estimation). Subsequently, one can define a curve based on the sample
of r − DFR acquired values, an the curve is extrapolated to a larger block size
for which the extrapolated DFR reaches the target. Known asymptotic models for
simpler variants of bit flipping, as [43, 39], predict a concave shape for the curve in the
relevant range of r values. Assuming a similar behavior, as described in [40], a linear
extrapolation over two (acquired) points shoots to an overestimation of the required
r (i.e., a conservative estimation). More extensive simulations can refine the DFR
estimation and hence lead to smaller (more desirable) sufficient r. References [14]
and [16] discuss simulation results with different extrapolations for several decoders,
including the Black-Gray variants that are used for BIKE.

B Known Attacks

B.1 Hard Computational Problems

In the generic (i.e. non quasi-cyclic) case, the two following problems were proven
NP-complete in [6].

Problem 1 (Syndrome Decoding – SD).
Instance: H ∈ F(n−k)×n

2 , s ∈ Fn−k2 , an integer t > 0.
Property: There exists e ∈ Fn2 such that |e| ≤ t and eHᵀ = s.
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Problem 2 (Codeword Finding – CF).
Instance: H ∈ F(n−k)×n

2 , an integer t > 0.
Property: There exists c ∈ Fn2 such that |c| = t and cHᵀ = 0.

In both problems the matrix H is the parity check matrix of a binary linear [n, k]
code. Problem 1 corresponds to the decoding of an error of weight t and Problem 2
to the existence of a codeword of weight t. Both are also conjectured to be hard on
average. This is argued in [1], together with results which indicate that the above
problems remain hard even when the weight is very small, i.e. t = nε, for any ε > 0.
Note that all known solvers for one of the two problems also solve the other and have
a cost exponential in t.

B.1.1 Hard Quasi-Cyclic Computational Problems

Caveat. In the sparse polynomial problems related to QC-MDPC codes, the parity
of the weight matters. It doesn’t make the problems easier or harder in practice but
the weight parity of a sum, product, or inverse of elements of R is determined by the
weight parity of the operands. Those parities must be specified in problem statements
and proofs, giving way to multiple versions. Stated versions are only those of interest
for BIKE. The elements of R of odd and even weight are respectively denoted Rodd

and Reven. For any integer t, its parity is denoted p(t) ∈ {odd, even}.
Problem 3 ((2, 1)-QC Syndrome Decoding – (2, 1)-QCSD).
Instance: (h, s) ∈ Rodd ×Rp(t), an integer t > 0.
Property: There exists (e0, e1) ∈ Et such that e0 + e1h = s.

Problem 4 ((2, 1)-QC Codeword Finding – (2, 1)-QCCF).
Instance: h ∈ Rodd, an even integer w > 0, with w/2 odd.
Property: There exists (h0, h1) ∈ Hw such that h1 + h0h = 0.

The problems will be referred to respectively as qcsdr,t and qccfr,w, indices
being dropped unless an ambiguity is possible. A witness is an element, respectively
of Et and Hw, which verifies the property for some given input. The expression
qcsd(e, h, s) is a boolean whose value is true if and only if e = (e0, e1) is a witness
of qcsd for the input (h, s), that is if e ∈ Et and e0 + e1h = s. For convenience, for
any other input, including when the the elements are out of range (e.g. e = ⊥), the
value of qcsd(e, h, s) is false. Similarly, the expression qccf(h0, h1, h) is true if and
only if (h0, h1) is a witness of qccf for the input h.

Remark 4. 1. In the context of the general syndrome decoding problem, there is
a search to decision reduction [2]. For the quasi-cyclic case, no such reduction
is known.
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2. Best known solvers for the quasi-cyclic problems above all derive from Informa-
tion Set Decoding (ISD). Though these solvers are all designed for the search
problems (i.e. find a witness for the instance), they do not perform essentially
better for the decision problems (i.e. decide whether or not the property holds
for the instance).

Key Security. A key recovery adversary A against qccf takes as argument h ∈
Rodd and returns an element (h0, h1) ∈ Hw ∪ {⊥}. Its advantage is defined as

AdvOW
qccf(A) = Pr

[
qccf(A(h1h

−1
0 ), h1h

−1
0 ) | (h0, h1) $←Hw

]
.

A distinguisher D against qccf takes as argument h ∈ Rodd and returns true or
false. Its advantage is defined as

AdvIND
qccf(D) =

∣∣∣Pr
[
D(h1h

−1
0 ) | (h0, h1) $←Hw

]
− Pr

[
D(h) | h $←Rodd

]∣∣∣ .
Message Security. A (generic) decoder A against qcsd takes as argument (h, s) ∈
Rodd ×Rp(t) and returns e ∈ Et ∪ {⊥}. Its advantage is defined as

AdvOW
qcsd(A) = Pr

[
qcsd(A(h, e0 + e1h), h, e0 + e1h) | (h, (e0, e1)) $←Rodd × Et

]
.

Note that the requirement is that A(h, e0 + e1h) returns a witness, not necessarily
the error (e0, e1) used to build the instance. A distinguisher D against qcsd takes
as argument (h, s) ∈ Rodd ×Rp(t) and returns true or false. Its advantage is defined
as

AdvIND
qcsd(D) =

∣∣∣Pr
[
D(h, e0 + e1h) | (h, (e0, e1)) $←Rodd × Et

]
−

Pr
[
D(h, s) | (h, s) $←Rodd ×Rp(t)

]∣∣∣ .
Concretely, the hardness of Problems 3 and 4 is expressed by the fact that for all
known adversaries of advantage Adv, for any of the above definitions, and running
in time T , the quantity T/Adv grows exponentially with the instance size.

B.2 Information Set Decoding

The best asymptotic variant of ISD is due to May and Ozerov [27], but it has a
polynomial overhead which is difficult to estimate precisely. In practice, the BJMM
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variant [5] is probably the best for relevant cryptographic parameters. The work
factor for classical (i.e. non quantum) computing of any variantA of ISD for decoding
t errors (or finding a word of weight t) in a binary code of length n and dimension k
can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error rate
t/N . It has been proven in [44] that, asymptotically, for sublinear weight t = o(n)
(which is the case here as w ≈ t ≈

√
n), c = log2

1
1−R for all variants of ISD.

In practice, when t is small, using 2ct with c = log2
1

1−R gives a remarkably good
estimate for the complexity. For instance, non asymptotic estimates derived from
[21] give WFBJMM(65542, 32771, 264) = 2263.3 “column operations” which is rather
close to 2264. This closeness is expected asymptotically, but is circumstantial for
fixed parameters. It only holds because various factors compensate, but it holds for
most MDPC parameters of interest.

B.2.1 Exploiting the Quasi-Cyclic Structure.

Both codeword finding and decoding are a bit easier (by a polynomial factor) when
the target code is quasi-cyclic. If there is a word of weight w in a QC code then
its r quasi-cyclic shifts are in the code. In practice, this gives a factor r speedup
compared to a random code. Similarly, using Decoding One Out of Many (DOOM)
[36] it is possible to produce r equivalent instances of the decoding problem. Solving
those r instances together saves a factor

√
r in the workload. The system parameters

will be chosen with the following guidelines:

• BIKE Message Security: WF(qcsdr,t) ≈
WFISD(2r, r, t)√

r

• BIKE Key Security: WF(qccfr,w) ≈ WFISD(2r, r, w)

r

where WF(qcsdr,t) and WF(qccfr,w) denote the average cost for finding a witness
respectively to Problem 3 and Problem 4, and WFISD is the average cost of the best
known ISD variant for the generic decoding of linear codes.

B.2.2 Exploiting Quantum Computations.

Recall first that the NIST proposes to evaluate the quantum security as follows:
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1. A quantum computer can only perform quantum computations of limited
depth. They introduce a parameter, MAXDEPTH, which can range from 240

to 296. This accounts for the practical difficulty of building a full quantum
computer.

2. The amount (or bits) of security is not measured in terms of absolute time but
in the time required to perform a specific task.

Regarding the second point, the NIST presents 6 security categories which cor-
respond to performing a specific task. For example Task 1, related to Category 1,
consists of finding the 128 bit key of a block cipher that uses AES-128. The security
is then (informally) defined as follows:

Definition 6. A cryptographic scheme is secure with respect to Category k iff. any
attack on the scheme requires computational resources comparable to or greater than
those needed to solve Task k.

In what follows we will estimate that our scheme reaches a certain security level
according to the NIST metric and show that the attack takes more quantum resources
than a quantum attack on AES. We will use for this the following proposition.

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover’s algorithm for finding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover’s attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N

where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

The point is that (essentially) the best quantum attack on our scheme consists in
using Grover’s search on the information sets computed in Prange’s algorithm (this is
Bernstein’s algorithm [7]). Theoretically there is a slightly better algorithm consist-
ing in quantizing more sophisticated ISD algorithms [24], however the improvement
is tiny and the overhead in terms of circuit complexity make Grover’s algorithm used
on top of the Prange algorithm preferable in our case.

Proof. Following Zalka[46], the best way is to perform Grover’s algorithm sequen-
tially with the maximum allowed number of iterations in order not to go beyond
MAXDEPTH. Grover’s algorithm consists of iterations of the following procedure:
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• Apply U : |0〉|0〉 →
∑

x∈{0,1}n
1

2n/2
|x〉|f(x)〉.

• Apply a phase flip on the second register to get
∑

x∈{0,1}n
1

2n/2
(−1)f(x)|x〉|f(x)〉.

• Apply U †.

If we perform I iterations of the above for I ≤ 1√
α
then the winning probability is

upper bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially
before measuring, and each iteration costs time Cf . At each iteration, we succeed
with probability αI2 and we need to repeat this procedure 1

αI2
times to get a result

with constant probability. From there, we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (1)

A similar reasoning performed on using Grover’s search on AES-N leads to a quantum
complexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (2)

The proposition follows by comparing (1) with (2).

B.3 Vulnerabilities Due to Decoding Failure

BIKE is currently designed to use ephemeral keys. However, if a keypair is reused,
either inadvertently or by choice, the system is vulnerable to failure attacks.

B.3.1 The GJS Reaction Attack

The reaction attack [20] exploits correlation between the private key and the error
patterns causing a failure. Collecting a few such error patterns allows an efficient
key recovery attack. The amplification technique of [31] shows that, essentially, the
discovery the first faulty error pattern dominates in the computational cost of the
attack. And the average cost for discovering this first pattern is the inverse of the
DFR. Hence, for instance, a DFR of 2−128 is needed to ensure a 128 bits security
level. Note that this is consistent with the IND-CCA security reduction (Theorem 3
of §C) and this also proves that the reduction is tight with respect to the DFR.
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B.3.2 Proving the DFR – Weak Keys and Error Floors

The decoding failure rate is defined on average over all private keys (h0, h1) ∈ Hw

and all errors (e0, e1) ∈ Et. This definition is relevant for the security reduction and
thus for the IND-CCA security of BIKE.

Current methods to estimate the DFR are heuristic, see §A.2.4, and are based on
simulations, extrapolations, and models for the decoder’s asymptotic behavior. But
those models do not take into account all combinatorial properties of the codes. It is
not possible to completely exclude the possibility that either particular codes (weak
keys, as mentioned in [14]) or particular error patterns (near-codewords, leading to
error floors, as mentioned in [40]) have a contribution to the average failure rate
which is not captured by the extrapolation method.

Weak Keys: For any set of keysW ⊂ Hw, denote DFR(W) its relative DFR, taken
on average over all errors and all keys in W . If a set of keys is such that

DFR(W) · |W|
|Hw|

> 2−λ,

then the (average) DFR would also be above the security requirement, even if
the extrapolated failure rate was small enough. Such a set of weak keys was
suggested in [14], with a relative DFR which was considerably higher than for
a typical key. Later it was proven in [41] that, even when generalized, this
family of weak keys had a negligible contribution to the average DFR.

Error Floors: Error floors happen in coding theory [26, 32] for some families of
codes, including LDPC codes. They are caused by small weight words which
also have syndromes of small weight.

C A CCA Proof for BIKE
The BIKE protocol flows, as defined in §2, were proposed in [17]. Moreover, [17]
showed that the flows conform to the HHK framework which consequently yielded
the proof of IND-CCA security of BIKE (under the Assumption 3. on DFR). The
proof in this appendix offers further details about the application of the HHK proofs
to BIKE.
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C.1 An IND-CPA Proof for BIKE PKE

C.1.1 From Computational Problems to OW-CPA

Table 10 gives a formal definition of the PKE of §1.2, denoted PKE0. The OW-CPA

KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt0 Input: h ∈ R, (e0, e1) ∈ Et
Output: s ∈ R
s← e0 + e1h

Decrypt0 Input: (h0, h1) ∈ Hw, s ∈ R
Output: e ∈ Et ∪ {⊥}
e← decoder(sh0, h0, h1)

Table 10: PKE0: McEliece-like PKE from QC-MDPC codes

Game G3 (OW-CPA) Game G4 D(h) :

1: (h0, h1)
$←Hw

2: h← h1h
−1
0

3: (e∗0, e
∗
1)

$←Et
4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return qcsd(e, h, s∗)

1: (h0, h1)
$←Hw

2: h $←Rodd

3: (e∗0, e
∗
1)

$←Et
4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return qcsd(e, h, s∗)

1:
2:
3: (e∗0, e

∗
1)

$←Et
4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return qcsd(e, h, s∗)

Table 11: OW-CPA Security Games for PKE0

games for PKE0 are given in Table 11. The first game G3 is the standard OW-CPA
game and the second game G4 is the generic decoding game. Recall that qcsd(e, h, s)
is true if and only if e is a witness of qcsd (Problem 3) for the instance (h, s). The
advantage of those games for a given adversary A′ is defined as the probability that
the game outcome is true. Relevant computational problems are defined in §B.1.1.

Theorem 1. For any OW-CPA adversary A′ against PKE0 there exists a distinguisher
D against qccf, running in about the same time, such that

AdvOW-CPA
PKE0

(A′) ≤ AdvIND
qccf(D) + AdvOW

qcsd(A′).
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Proof. 1. The difference between G3 and G4 lies solely on the way h is selected.
The distinguisher D defined in Table 11 verifies

AdvG3(A′) = Pr
[
D(h1h

−1
0 ) | (h0, h1) $←Hw

]
AdvG4(A′) = Pr

[
D(h) | h $←Rodd

]
and thus ∣∣AdvG3(A′)− AdvG4(A′)

∣∣ = AdvIND
qccf(D).

2. The adversary A′ can be viewed as a decoder against qcsd. It verifies

AdvG4(A′) = AdvOW
qcsd(A′).

Finally, since G3 is the OW-CPA game against PKE0

AdvG3(A′) = AdvOW-CPA
PKE0

(A′) ≤ AdvIND
qccf(D) + AdvOW

qcsd(A′)

C.1.2 From OW-CPA to IND-CPA

Table 12 describes a new encryption scheme PKE, which is essentially a randomized
version of PKE0. It is constructed as a hybrid encryption scheme [42, 11], where the
KEM part is derived from PKE0 as described in [12], and the DEM component is
simply a one-time pad. Unlike PKE0, the plaintext here is a bit-string m, and it is
not embedded in the sparse vector (e0, e1). It will be shown that PKE is IND-CPA
secure, reducing tightly to the OW-CPA security of PKE0. The hash function L is
modeled as random oracle for purpose of the proof, which is inspired again to [12].

The IND-CPA gameG0 against PKE is given in Table 13. The advantage for an ad-
versary A = (A1, A2) is defined as AdvIND-CPA

PKE (A) = AdvG0(A) = |Pr[G0(A)]− 1/2|.

Lemma 1. For any IND-CPA adversary A = (A1, A2) against PKE, there exists an
OW-CPA adversary A′ against PKE0, running in about the same time, such that

AdvIND-CPA
PKE (A) ≤ 1

2
AdvOW-CPA

PKE0
(A′)
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KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)

$←Et ; c← (e0 + e1h,m⊕ L(e0, e1))
Decrypt Input: (h0, h1) ∈ Hw, (c0, c1)

Output: m ∈M∪ {⊥}
e← decoder(sh0, h0, h1)
if e = ⊥ then m← ⊥ else m← c1 ⊕ L(e)

Table 12: PKE: Randomization of PKE0

Game G0 (IND-CPA) Game G1
(†) Game G2

(†)

1: (h0, h1)
$←Hw

2: h← h1h
−1
0

3: e∗ = (e∗0, e
∗
1)

$←Et
4: c∗0 ← e∗0 + e∗1h

5: b $←{0, 1}
6: (m∗0,m

∗
1, st)← A1(h)

7: c∗1 ← m∗b ⊕ L(e∗)
8: b′ ← A2(h, c

∗
0, c
∗
1, st)

9: return b = b′?

1: (h0, h1)
$←Hw

2: h← h1h
−1
0

3: e∗ = (e∗0, e
∗
1)

$←Et
4: c∗0 ← e∗0 + e∗1h

5: b $←{0, 1}
6: (m∗0,m

∗
1, st)← A1(h)

7: c∗1 ← m∗b ⊕ L(e∗)
8: b′ ← A2(h, c

∗
0, c
∗
1, st)

9: return b = b′?

1: (h0, h1)
$←Hw

2: h← h1h
−1
0

3: e∗ = (e∗0, e
∗
1)

$←Et
4: c∗0 ← e∗0 + e∗1h

5: b $←{0, 1}
6: (m∗0,m

∗
1, st)← A1(h)

7: c∗1
$←M

8: b′ ← A2(h, c
∗
0, c
∗
1, st)

9: return b = b′?
(†) game stops and returns true if A1 or A2 queries L on a witness of qcsd for (h, c∗0)

Table 13: Games Sequence for the IND-CPA Security of PKE

Proof. 1. A first sequence of games for the proof is given in Table 13. The set of
input queries to L made by the adversary A is denoted L ⊂ Et. The set

L∗ = {e ∈ L | qcsd(e, h, c∗0)}

denotes the set of witnesses of qcsd for the instance (h, c∗0) queried by A. For
convenience the event L∗ 6= ∅ is denoted L∗.
First remark that games G0, G1, G2 are identical when L∗ = ∅. It is clear for
G0 and G1 because the stopping condition is never met. The distributions in
G2 only differs for c∗1: c∗1

$←M in G2 rather than c∗1 ← m∗b ⊕ L(e∗) in G0 and
G1. If L∗ = ∅ then, in particular, e∗ 6∈ L and L(e∗) is never queried by the
adversary. The value L(e∗) is used once only, by the challenger, and is drawn
uniformly at random inM to emulate a random oracle for L. Thus, if L∗ = ∅
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then c∗1 ← m∗b ⊕ L(e∗) and c∗1
$←M yield distributions that are statistically

indistinguishable. It follows that the probability of the event L∗ is identical in
all games, the common value is denoted Pr[L∗]. Also

Pr[G0(A) | ¬L∗] = Pr[G1(A) | ¬L∗] = Pr[G2(A) | ¬L∗] =
1

2
.

The last equality being true because b′ is independent of b in G2. Finally

Pr[G0(A)] = Pr[G0(A) ∧ ¬L∗] + Pr[G0(A) ∧ L∗]
≤ Pr[G0(A) | ¬L∗] · (1− Pr[L∗]) + Pr[L∗]

≤ 1

2
+

1

2
Pr[L∗].

Game G′3 L′(e) : Game G3 (OW-CPA)
1: (h0, h1)

$←Hw

2: h← h1h
−1
0

3: e∗ = (e∗0, e
∗
1)

$←Et
4: c∗0 ← e∗0 + e∗1h

5: b $←{0, 1} ; wt← ⊥
6: (m∗0,m

∗
1, st)← AL′

1 (h)

7: c∗1
$←M

8: b′ ← AL′
2 (h, c∗0, c

∗
1, st)

9: return qcsd(wt, h, c∗0)

if qcsd(e, h, c∗0) then
wt← e

return L(e)

A′(h, c∗0):
5: b $←{0, 1} ; wt← ⊥
6: (m∗0,m

∗
1, st)← AL′

1 (h)

7: c∗1
$←M

8: b′ ← AL′
2 (h, c∗0, c

∗
1, st)

9: return wt

1: (h0, h1)
$←Hw

2: h← h1h
−1
0

3: (e∗0, e
∗
1)

$←Et
4: s∗ ← e∗0 + e∗1h
5: e← A′(h, s∗)
6: return qcsd(e, h, s∗)

AL′
1 , A

L′
2 are as A1, A2 but

call L′ instead of L

Table 14: Adversary for PKE0

2. The final step of the proof relates to OW-CPA games, see Table 14. The use
of (AL′

1 , A
L′
2 ) instead of (A1, A2) in G′3 does not change the distribution and

only allows to maintain the variable wt. As argued earlier in the proof, the
distributions in G′3 are identical to the distributions in G2 when L∗ = ∅ and
thus the probability of the event L∗ 6= ∅ is the same here as in the earlier
games, that is Pr[L∗]. The variable wt differs from ⊥ at the end of the game
if and only if L∗ 6= ∅. If the variable wt differs from ⊥, its value is a witness
and the game succeeds, else it fails. Hence

Pr[G′3(A)] = Pr[G′3(A) | L∗] · Pr[L∗] = Pr[L∗]
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It is readily observed that Game G′3 with the adversary A is identical to G3,
the OW-CPA game for PKE0, with the adversary A′. Note that A′ has access to
(h, c∗0), thus it can use L′ to monitor the queries to L and maintain the variable
wt.

Putting everything together provides:

AdvIND-CPA
PKE (A) =

∣∣∣∣Pr[G0(A)]− 1

2

∣∣∣∣ ≤ 1

2
Pr[L∗] =

1

2
Pr[G3(A

′)] =
1

2
AdvOW-CPA

PKE0
(A′).

Theorem 2. For any IND-CPA adversary A = (A1, A2) against PKE there exists a
distinguisher D against qccf and a decoder A′ against qcsd, both running in about
the same time as A, such that

AdvIND-CPA
PKE (A) ≤ 1

2
AdvIND

qccf(D) +
1

2
AdvOW

qcsd(A′).

Proof. The proof simply combines Theorem 1 and Lemma 1.

C.2 From IND-CPA to IND-CCA

C.2.1 PKE Correction and DFR

In [23], PKE is defined to be δ-correct if

E[max
m∈M

Pr[Decrypt(sk, c) 6= m | c← Encrypt(pk,m)]] ≤ δ (3)

where the expectation is taken over (pk, sk) ← KeyGenPKE. Failure to decrypt a
ciphertext (c0 = e0 + e1h, c1) happens if and only if (e0, e1) 6= decoder(c0h0, h0, h1)
and c0 only depends on the internal randomness, not on the message m. This prop-
erty is referred to as message-agnostic in [17]. The max vanishes in (3). It follows
that PKE is δ-correct for any δ such that

Pr[(e0, e1) 6= decoder(e0h0 + e1h1, h0, h1) | (h0, h1) $←Hw, (e0, e1)
$←Et] ≤ δ

The left-hand side above is precisely the DFR as defined in the setup.

C.2.2 HHK Proof

The proof framework of [23] transforms a probabilistic public-key encryption scheme,
here PKE (Table 12), first into a derandomized variant PKE1 (Table 15) then into a key
encapsulation mechanism with implicit rejection KEM6⊥ (Table 16). A hash function
H is required for PKE1 and another one K for KEM6⊥.
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KeyGen0 Output: (h0, h1) ∈ Hw, h ∈ R
(h0, h1)

$←Hw ; h← h1h
−1
0

Encrypt1 Input: h ∈ R, m ∈M
Output: c ∈ R×M
(e0, e1)← H(m) ; c← (e0 + e1h,m⊕ L(e0, e1))

Decrypt1 Input: (h0, h1) ∈ Hw, c ∈ R×M, h ∈ R
Output: m ∈M∪ {⊥}
m← Decrypt((h0, h1), c)
if m 6= ⊥ and c 6= Encrypt1(h,m) then m← ⊥

Table 15: PKE1: Derandomizing PKE

KeyGen Output: (h0, h1, σ) ∈ Hw ×M, h ∈ R
(h0, h1, σ)

$←Hw ×M ; h← h1h
−1
0

Encaps Input: h ∈ R
Output: K ∈ K, c ∈ R×M
m

$←M ; c← Encrypt1(h,m) ; K ← K(m, c)
Decaps Input: (h0, h1, σ) ∈ Hw ×M, c ∈ R×M, h ∈ R

Output: K ∈ K
m← Decrypt1((h0, h1), c, h)
if m 6= ⊥ then K ← K(m, c) else K ← K(σ, c)

Table 16: KEM6⊥: KEM with Implicit Rejection From PKE1

Lemma 2. [23, §3.3] If PKE is δ-correct, for all IND-CCA adversary B against KEM6⊥
issuing at most q queries to K or H, there exists an IND-CPA adversary A against
PKE, running in about the same time, such that

AdvIND-CCA
KEM6⊥ (B) ≤ q · δ +

3 · q
|M|

+ 3 · AdvIND-CPA
PKE (A).

Proof (sketch). There are two key theorems in [23] to prove that KEM6⊥ is IND-CCA
secure. One relates the OW-PCVA security of PKE1 to the IND-CPA security of PKE.
The other relates the OW-PCA security of PKE1 with the IND-CCA security of KEM6⊥.
[23, Theorem 3.4] states that for all IND-CCA adversaries B against KEM6⊥, issuing at
most qK queries to K, there exists an OW-PCA adversary B′ against PKE1, running
in about the same time, issuing at most qK queries to Pco such that

AdvIND-CCA
KEM6⊥ (B) ≤ qK

|M|
+ AdvOW-PCA

PKE1
(B′)
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Pco is a plaintext checking oracle which returns true on input (m, c) if and only if
m = Decrypt1((h0, h1), c). [23, Theorem 3.2] is stated for an OW-PCVA adversary,
which is a stronger concept than the OW-PCA. A simpler version, downgraded to
OW-PCA is stated here. If PKE is δ-correct, [23, Theorem 3.2] states that for all
OW-PCA adversary B′ against PKE1 issuing at most qH queries to H and qK queries
to Pco, there exists an IND-CPA adversary A against PKE, running in about the
same time, such that

AdvOW-PCA
PKE1

(B′) ≤ qH · δ +
2 · qH + 1

|M|
+ 3 · AdvIND-CPA

PKE (A)

Lemma 2 is proved by combining the two results. The total number of queries to
random oracles H and K is aggregated to q.

C.3 The BIKE Key Encapsulation Mechanism

The construction proposed in [23] is convenient because it provides easy tools for the
proof. To obtain a self-contained description of KEM6⊥, the nested calls of Table 16
must be inlined. The result is the KEM described in Table 17, which is precisely the
one given in this specification in §2.2.

KeyGen : () 7→ (h0, h1, σ), h

Output: (h0, h1, σ) ∈ Hw×M, h ∈ R
1: (h0, h1)

$←Hw

2: h← h1h
−1
0

3: σ $←M

Encaps : h 7→ K, c

Input: h ∈ R
Output: K ∈ K, c ∈ R×M
1: m $←M
2: (e0, e1)← H(m)
3: c← (e0 + e1h,m⊕ L(e0, e1))
4: K ← K(m, c)

Decaps : (h0, h1, σ), c 7→ K

Input: ((h0, h1), σ) ∈ Hw ×M, c = (c0, c1) ∈ R×M
Output: K ∈ K
1: e′ ← decoder(c0h0, h0, h1) . e′ ∈ R2 ∪ {⊥}
2: m′ ← c1 ⊕ L(e′) . with the convention ⊥ = (0, 0)
3: if e′ = H(m′) then K ← K(m′, c) else K ← K(σ, c)

Table 17: KEM6⊥ Inlined from Tables 12, 15, and 16

The transformation is straightforward and the decapsulation can be simplified
by adding the convention ⊥ = (0, 0) ∈ R2, so that L(⊥) is meaningful, and by
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remarking that since the range of H is Et, checking e′ = H(m′) also checks |e′| = t
and e′ 6= ⊥ = (0, 0).

Theorem 3. If PKE is δ-correct, for all IND-CCA adversary B against KEM6⊥ issuing
at most q queries to K or H, there exists a distinguisher D against qccf and a
decoder A′ against qcsd, both running in about the same time as B, such that

AdvIND-CCA
KEM6⊥ (B) ≤ q · δ +

3 · q
|M|

+
3

2
AdvIND

qccf(D) +
3

2
AdvOW

qcsd(A′). (4)

Proof. The proof combines Theorem 2 and Lemma 2.

C.3.1 Concrete Security and Parameters Selection

To offer λ bits of security it is typically required that |A| /Adv(A) ≥ 2λ for all
adversaries A running in time |A|. Observing that the running time must exceed
the number of oracle queries, it follows from Theorem 3 that KEM6⊥, the BIKE key
encapsulation mechanism, offers λ bits of (classical) security in the IND-CCA game
if the system parameters r, w, t, `, and decoder are selected at setup such that

1. qccfr,w offers λ bits of security

2. qcsdr,t offers λ bits of security

3. |M| = 2` ≥ 2λ

4. DFR(decoder) ≤ 2−λ.

Note that if all conditions are met except condition 4 on the DFR, the scheme is still
IND-CPA secure.

The computational problems guide the selection of w and t (and not r) based on
the best known solvers, as discussed in §B.2, and on the fact that the block size r has
a very limited influence on those solvers’ complexity (see §A.2.4). Choosing ` large
enough is straightforward. Last, with w and t fixed, the block length r is selected so
that the DFR estimate is low enough, as discussed in §A.2.4.

There are additional requirements for the parameters selection (see §A.1.2): 1)
the block size is chosen such that 2 is primitive mod r to avoid any undesirable
structure in the polynomial ring R = F2[X]/(Xr − 1), and 2) the row weight w is
chosen even and such that |h0| = |h1| = w/2 is odd to ensure that h0 is always
invertible in R.
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C.4 Security with Non Uniform Key Generation

Two games related to BIKE are considered in Table 18 which differ only by the way
the secret key is sampled, either uniformly or using some distribution D over Hw.

Game G (biased key) Game G′ (uniform key)
1: (h0, h1)

D←Hw
... same game

1: (h0, h1)
$←Hw

... same game

Table 18: Biased vs Uniform Key Sampling

Claim: if an adversary A is able to win the (biased) game G with a success proba-
bility ε, then the same adversary will win the game G′ with probability ≤ τε where

τ = max
h0,h1

Pr
[
(h0, h1) | (h0, h1)

D←Hw

]
Pr
[
(h0, h1) | (h0, h1) $←Hw

] .
Proving this claim is straightforward (see [37, §4.2, equation (5)] for instance). Now,
in all the security games related to public key encryption and key encapsulation
mechanism which are mentioned in this section a single key pair in drawn at the
beginning of the game, thus a single usage of distribution D is made. No adversary
can gain more than a factor τ for its probability of success when a biased key is used
rather than a uniform one. Finally, if the distribution D consists in drawing h0 and
h1 with two calls to Algorithm 3, both with (len,wt) = (r, w/2), the value of τ , which
derives from [37, Proposition 3], is

τ ≤ 2

w/2−1∏
i=0

(
1 +

(r − i)− ri
232

)
, ri = 232 mod (r − i), 0 ≤ i < w/2.

Security r w t τ

Level 1 12,323 142 134 τ ≤ 1.00023
Level 3 24,659 206 199 τ ≤ 1.00059
Level 5 40,973 274 264 τ ≤ 1.00130
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